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Chapter 8

Star formation and star forming regions

8.1 Introduction

The average density in a star is in excess of 103 kgm™3, and this is enormously
greater than any densities encountered in the interstellar gas. Evidently, great
compression must occur, and the only force capable of producing this in a mass
of gas is the self-gravity of the gas. However, gravity must overcome a variety
of disruptive forces. For example, gas and magnetic pressure, turbulence and
rotation, ail act against compression. Indeed, so many are the effects opposing
star formation that the difficulties seem almost insuperable. However, it is
obvious from the structure of the Galaxy that Nature has no such difficulties!

The existence of stars which have lifetimes much less than the age of the
Galaxy implies that star formation must be an ongoing process. This is further
suggested by heavy element abundances which clearly show that many cycles of
nuclear burning must have occurred. We will consider only the simplest possible
situations involving star formation and look at necessary—but not sufficient (!)—
conditions which must be satisfied for star formation to take place.

8.1.1 The equilibrium of a single cloud

We first consider a single isolated spherically symmetric cloud in equilibrium
under three forces, namely internal pressure, self-gravity and surface pressure
exerted by an external medium. To establish the necessary equations, consider

a spherical shell in the cloud of thickness dr at radius r (figure 8.1). The shell
has mass

dM(r) = 4nr’p(r)dr (8.1)
where p(r) is the density of the gas at radius r. In equilibrium, the inwards
gravitational force on the shell due to the mass M (r) interior to it must be

balanced by a pressure gradient. Thus a pressure differential dP(r) must exist
across the shell. Obviously, the pressure must decrease outwards to produce an
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Figure 8.1. Geometry of a spherical shell.

outwards force. For equilibrium, therefore,

4rr?dP(r) = ~GM(r)dM(r)/r?. (8.2)

We can write this equation as
3V(r)dP(r) = —-GM(r)dM(r)/r (8.3)

where V(r) = ‘3—‘7”3 is the interior volume at radius r. Let us now integrate
equation (8.3) from the centre of the cloud to its edge where it has radius R,
and pressure equal to the external pressure P;. Thus

Py M,
3f V(r)dP(r) = —f w. (8.4)
P,

0 0 r

In equation (8.4), M. is the total mass of the cloud and P, is the central pressure
in the cloud. The left-hand side of equation (8.4) can be integrated by parts and

gives

P, edge Ve
3] V(rYdP(r) =3V (r)P(r) —Bf Pdv
P, 0

0 centre

Ve
= 3V B, = 3/ Pdv. (8.8)
0

Here V, = %JTRS is the volume of the cloud.
Since the internal energy, &;, per unit volume of monatormic gas is given
by

3
=P 8.6
&= (8.6)



(8.2)

(8.3)

ntegrate
dius R

(8.4)

pressure
yarts and

(8.5)

. is given

(8.6)
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we can write

Ve 2 Ve 2
/ PdV:—f g dV ==-T (8.7)
0 3 0 3

where 7 is the thermal energy content of the cloud.
The right-hand side of equation (8.4) is just the gravitational self-energy,
$2, of the cloud. Equation (8.4) can be written as

IVePs =27 4 Q. (8.8)

Other forces (e.g. magnetic fields) could be added to this formulation.

8.1.2 The collapse of an isolated gas cloud and spontaneous star formation

We will initially consider a spherical gas cloud on which the only forces acting
are those due to its self-gravity and its internal pressure. We first ignore the
surface pressure exerted by any surrounding gas, since the conclusions are not
drastically changed by its inclusion, but discuss later its significance (section
8.1.3). We have already derived a criterion which must hold if the cloud is to
be in equilibrium. Applied to these circumstances it takes the form of equation
(8.8) with the surface pressure term removed, i.e.

2T + ..Q = 0. (8.9)

Suppose we have a situation where 27 > —(, i.e. 27 + Q > 0. Then the
pressure term dominates and intuitively we would expect the cloud to expand.
Conversely, if 27 < —, ie. 27 + Q < 0, we would expect the cloud to be
contracting. These intuitive expectations can be confirmed by analysis and we
can write the following schematic equation to describe the dynamical state of
an isolated cloud:

2T +Q2 <0 Contraction
=0 Equilibrium (8.10)

>0 Expansion.

Equation (8.3) shows that the pressure and density in the cloud will vary
with radius. This variation can be found by integrating this equation subject to
assumptions connecting the cloud pressure and density. In order to make simple
estimates we will assume that the cloud has a uniform density p. and pressure
P.. For a uniform cloud then

2T =3PV, (8.11)

and

Q:_/Mc GM(r)dM _ 16m° , [Rur“dr SGME'
0 r 3 0
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Thus, in order to start the contraction which is necessary if a cloud is
ultimately to form a star (or stars) we require

3GM?
3 RCC > 47 R} P. (8.13)
Since ST
Py (8.14)
4 R7myp

where T, is the gas temperature (assumed constant) condition (8.13) becomes

GM. > kT,

: 8.15
5R. ™ pmy ( )

Now, kT./umy = cg, where ¢, is the sound speed in the cloud (which will
be assumed to behave isothermally). The sound travel time across the cloud is
t, ~ R./c.. Hence equation (8.15) can be written as

1, > (15/4wGpe)'">. (8.16)

The term on the right-hand side of condition (8.16) has the following
physical interpretation. Consider a spherical cloud which is allowed to collapse
under self-gravity. If we ignore the effects of the internal pressure then this is
said to be a free-fall collapse. The equation of motion of a thin shell situated
an initial distance ro from the centre (figure 8.1) is just

d?r 4 errS,oc

o BT

In deriving this equation, we have assumed that the cloud has an initially uniform
density p.. Define the following quantities:

x=rlro, T=t/tg,  tx=+31/32Gpc. (8.18)

Equation (8.17) then takes the form

W 8.19
iy ald

where the dot indicates differentiation with respect to 7. We can put equation
(8.19) into the form ‘

L P (8.20)

and integrate to get
+a. (8.21)
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Here a is a constant of integration. If the cloud starts off from rest, then when
X =1, x = 0 and equation (8.21) becomes

a f1 L2
X = " (~ = 1) : (8.22)

(Note that we take the negative root since x is directed inwards.) In order
to integrate this equation, set x = cos?#. Then equation (8.22) becomes

2945_ %
cos“ 86 = 7 (8.23)

which can be immediately integrated to give

g 1 T

=+ -=sin20 = — +p 8.24

7 + 7S 7 + (8.24)
where b is the constant of integration. When 7 = 0, x = 1 so that § — 0. Hence
b = 0. Now the shell reaches the centre when x = 0, i.e. when 6 = /2. From
equation (8.24) we thus obtain T = 1 when x = 0. Note that this time is the
same for all ry. Hence the free-fall collapse time is just

3r i
t = ) 8.2
t (32Gpc) (8:25)

We now see that the condition for collapse (equation (8.16)) can be written

in the form
2410

L 2 tes R gy (8.26)
Physically then the condition for collapse is that the free-fall time must be less
than about the time taken for a sound wave to cross the cloud. We can write
equation (8.26) in an alternative form by defining M.y, as the critical mass for
collapse of a cloud of density p, and internal sound speed c;. This critical mass
is often referred to as the Jeans mass. Then equation (8.26) gives as the collapse
condition

373
32

Let us now calculate the critical mass under the density and temperature
conditions typical of the diffuse neutral clouds discussed in section 7.4.1. We
find M, =~ 1()4Mo. This is much greater than their observed masses. We
conclude that star formation does not take place in such clouds and ample
evidence confirms this conclusion.

If we apply these ideas to the gas in cool molecular clouds, we come to
rather different conclusions. We will assume that the typical particle density
is 5 x 10° m~3 and the gas temperature is 20 K. The critical mass then is
M == 30Mg, which is derived assuming that the mean mass of a particle

1/2
M > Mg = ( ) ceG 2 p7 12, (8.27)
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is 2my. The critical radius corresponding to this mass 1s Re; ~ 0.3 pe.
Thus a given molecular cloud could contain many subunits which can collapse
independently. Hence, if we assume that the type of collapse discussed is
necessary for at least some chance of star formation we would conclude that
it is likely that stars do not form individually but in groups within a parent
cloud of high mass. This expectation is generally borne out by observation.

However, once a given cloud can start to contract, the story 1s not ended.
Equation (8.27) shows that provided ¢, remains constant (or decreases with
increasing density) the critical mass for collapse decreases as the collapse
proceeds (because the average density increases). We therefore expect that
the initially collapsing cloud (which may be a subsection of a more massive
cloud) becomes liable to break up into fragments of smaller mass which could
themselves collapse independently. These fragments could become liable to
fragmentation later on by the process by which they were formed.

This process of break-up into a hierarchy of fragments cannot continue
indefinitely. As a cloud collapses, part of its gravitational potential energy
can be converted into heat by compression or by the generation of supersonic
motions which transform kinetic energy into heat via shock waves. If this energy
input increases the sound speed then we can see from equation (8.27) that My
would be increased and the successive process of fragmentation ultimately will
be halted. Generally, this occurs when the heat generated can no longer be
radiated away efficiently. This will occur when the cooling radiation is unable
to escape because of increasing opacity. Detailed investigation of this process
suggests that the lowest mass it is possible to form by successive fragmentation
is about 0.01 M.

8.1.3 Induced star formation

We next consider clouds which are initially in equilibrium, now including an
external surface pressure, and which therefore satisfy equation (8.8). This
equation can be written in the form

A B
PS:F_R_;“

[

(8.28)

where we have used equations (8.11) and (8.12). In equation (8.28), A
(= 3kT.M./4mpumy) and B (= 3GM02/203T) are constants for a cloud of a
given mass M. and temperature T.. A sketch of the variation of P with R, is
shown in figure 8.2.

If we fix the external pressure at some value Py, the cloud can exist in
either of two equilibrium states, E and D (figure 8.2). Suppose that the surface
pressure is now raised to Py + A Pp; we will briefly discuss later how this can
happen. Figure 8.2 shows that, in principle, we move to new equilibrium states
E’ and D’. But we must be cautious about this. First consider a cloud initially at
D. Increasing the surface pressure physically must cause a cloud to contract, i.e.
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R.=B/A

Ry=4B/3A R,

Figure 8.2. The pressure-radius relationship for an isothermal cloud with a surface
pressure,

R must decrease. The internal pressure in the cloud increases to balance the
external pressure. Hence the cloud moves from D — D’ with decreasing radius
and increasing internal pressure. What happens if we start at E? If the external
pressure is increased, figure 8.2 shows that we would have to increase the cloud
radius in order to achieve a new equilibrium at E. This is physically not possible,
since the increased external pressure must cause the cloud to contract. Hence
the cloud cannot stay in equilibrium and it starts to collapse. In other words,
cloud equilibria to the left of the maximum M (R. <4B/3A) in figure 8.2 are
unstable to collapse. Obviously, therefore, if we start with a stable configuration
at D and increase the pressure sufficiently, we can cause clouds to move into an
unstable regime. If this process leads to star formation, it is called ‘induced’ star
formation, as opposed to ‘spontaneous’ star formation where a cloud collapses
because it satisfies the contraction condition (8.10).

We have already met various dynamical processes which can increase
the pressure of the interstellar medium, namely photoionization, supernovae
explosions and stellar wind activity. All these may play a role in inducing star
forming activity. The fact that the formation and dynamical effects of massive
stars may induce further star formation gives rise to the concept of ‘sequential
star formation’. This process is sketched in figure 8.3. The existence of chains
of O associations with the oldest at one end and the youngest at the other is
strong evidence for these effects.

The picture of star formation as presented is simplified almost to the point
of unreality. We have, for example, neglected the effects of the internal structure
of the cloud. However, there are even more important omissions. The collapsing
gas cloud will contain a magnetic field (which should be included in equation
(8.8)). Collapse increases the magnetic field strength and hence the magnetic
pressure and this will act, like thermal pressure, to oppose the collapse. The
importance of magnetic fields depends critically on both the field geometry and
how the field is coupled to the gas. It now seems clear that at some point the
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Figure 8.3. Sketch of sequential star formation in a cloud.

gas and field must decouple. Other complicating effects include those of cloud
rotation since it is unlikely that any collapsing cloud will have zero angular
momentum. In the absence of a braking torque, the rotational velocity of a
cloud will increase because angular momentum is conserved. If the magnetic
field is connected to surrounding gas, the necessary braking torque may be
produced. All in all, star formation still remains one of the most fundamental

of astrophysical problems.

8.2 Observational signatures of star forming activity

8.2.1 Infrared sources

The direct optical observation of young stars (or YSO’s—Young Stellar Objects)
in molecular clouds is extremely difficult, in practice almost impossible. The
reason is simple: typical molecular clouds have optical depths in dust of 10-100.
Hence the only way to investigate what is going on in star forming regions 1s
in the infrared, millimetre wave and radio regions of the spectrum. Most of the
progress in the study of star formation over the last two decades has come from
the observational exploration of these spectral regions.

Although optical (or even harder) radiation cannot escape from the cloud,
it can be converted into longer wavelength radiation and this can escape. This
occurs because dust absorbs the direct short wavelength starlight and re-radiates
it in the infrared because the grain temperature is low. We can crudely estimate
the temperature, T, of a grain exposed to a flux of stellar radiation, Fgr, by
assuming that a grain absorbs and radiates as a black body (see also section
4.4.1). The grain temperature can then be estimated from

orTy = Fr (8.29)

where og is the Stefan—Boltzmann radiation constant. If a grain is located at a




