Astronomy 405 Solar System and ISM

Lecture 2: A Brief Survey

January 16, 2013

Planets in the Solar System

Terrestrial Planets: Mercury, Venus, Earth, Mars Jovian (Giant) Planets: Jupiter, Saturn, Uranus, Neptune (gas giants) (ice giants)

General Characteristics of the Planets

Characteristic	Terrestrial	Giant
Basic form	Rock	Gas/Ice/Rock
Mean orbital distance (AU)	0.39 - 1.52	5.3 - 30.0
Mean surface temperature (K)	215 - 733	70 - 165
Mass (M)	0.055 - 1.0	14.5 - 318
Equatorial radius (R)	0.38 - 1.0	3.88 - 11.2
Mean density (g cm ⁻³)	3.9 - 5.5	0.69 - 1.64
Sidereal rotation period	24h - 243d	9.9h - 17.2h
Number of known moons	0 - 2	13 - 63
Ring system	no	yes

Most of these differences are caused by their different distances to the Sun. Rotation (period and axis) can be affected by other factors. Rotation axes are inclined differently. Collisions may have caused the large axis tilts.

The seven largest satellites:

Earth - Moon
Jupiter - Io, Europa, Ganymede, Callisto
Saturn - Titan
Neptune - Triton

The Asteroid Belt (2 - 3.5 AU)

It was predicted by the Titius-Bode rule:

Planet	Titius-Bode	Actual mean
	Distance (AU)	Distance (AU)
Mercury	$(4+3\times 0)/10 = 0.4$	0.39
Venus	$(4 + 3 \times 2^{0})/10 = 0.7$	0.72
Earth	$(4 + 3 \times 2^1)/10 = 1.0$	1.00
Mars	$(4 + 3 \times 2^2)/10 = 1.6$	1.52
Ceres	$(4 + 3 \times 2^3)/10 = 2.8$	2.77
Jupiter	$(4 + 3 \times 2^4)/10 = 5.2$	5.20
Saturn	$(4 + 3 \times 2^5)/10 = 10.0$	9.58
Uranus	$(4 + 3 \times 2^6)/10 = 19.6$	19.2
Neptune	$(4 + 3 \times 2^7)/10 = 38.8$	30.05
Pluto	$(4+3\times2^8)/10=77.2$	39.48

Comets, Kuiper Belt Objects, Oort Cloud

Comets - dirty snowballs of ice and dust

- orbits with large eccentricities
- heated near perihelion
 - => coma + gas and dust tails

Two types of comets:period < 200 yrshort-periodKuiper Beltperiod > 200 yrlong-periodOort Cloud

Kuiper Belt Objects (KBOs) Trans-Neptunian Objects (TNOs) 30-1000 AU from the Sun

Largest known Kuiper Belt objects

2003 EL61

2005 FY9

Sedna

Pluto

C

Quaoar

Two types of comets: period < 200 yr shor period > 200 yr long

short-period long-period

Kuiper Belt Oort Cloud

Oort Cloud

- spherically symmetric
- 3000-100,000 AU
- none have been detected
 "at home" in the cloud
- detected as comets near perihelion

Meteoroid - fragments from asteroid collisions

Meteor - meteoroid entering and buring in the Earth's atmosphere

Meteorite - meteor that survived the entry and reached the ground

Meteor Shower - Earth moving through the dust trail left along a comet's orbit

What is the best time to watch a meteor shower?

Debris Disk - Dust in the Ecliptic Plane

Zodiacal Light - scattered sunlight in optical - blackbody emission in IR

Young Earth colliding with a Mars-like planetesimal => Earth+Moon Venus colliding with another planetesimal => rotation axis reversal Rocky debris => asteroids Icy debris => Kuiper Belt Objects; Oort Cloud Gravitational interactions can send debris inward or outward.