
Chapter: Dynamics of the ISM (4/15/13)

The interstellar gas is rarely static, motionless. When neutral gas is first ionized,

its temperature shoots up to 104 K, and because H0 → H+ + e− the particle number

density doubles. The increasing pressure (P = nkT ) drives the HII region to expand.

Stars that have ionizing powers are also sources of fast stellar winds. The fast stellar

wind dynamically interacts with the ambient medium to blow a bubble. Massive

stars end their lives in supernova explosion, and the supernova ejecta further interacts

dynamically with the ambient medium to form supernova remnants (SNRs).

Many objects have different names but share the same dynamical processes:

planetary nebulae – fast wind sweeping up previous slow wind to form a bubble,

interstellar bubble – fast wind sweeping up ambient ISM to form a bubble,

circumstellar bubble – fast wind sweeping up previous slow wind to form a bubble,

superbubble – large bubble blown by many stars collectively via winds and supernovae.

The global structure of the ISM consists of a mixture of phases: 106 K ionized,

104 K ionized, 102–103 K neutral atomic, and 10 K molecular components. The

production and distribution of these different components involve dynamic processes

as well.



Hydrodynamic Equations of Motion

Two reference systems:

Lagrangian – following a fluid element

Eulerian – fixed in space

Equation of Motion, or Momentum Equation
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In this equation D/Dt denotes the Lagrangian time derivative, and ∂/∂t denotes

the Eulerian time derivative. ρ is the density, ~B is the magnetic field, and φ is the

gravitational potential.

Poisson’s Equation

∇2φ = 4πGρ

The gravitational forces in HII regions, planetary nebulae and supernova remnants

are usually negligible.

Equation of Continuity, or Mass Conservation
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where U is the internal kinetic energy per unit volume; P
ρ
Dρ
Dt

is the heating from

compression, and U ∇ · ~v is the dilation effect.

Ionization Equation
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For an ideal gas, P = ρkT
µ
, where µ is the mean mass per particle.

For an ideal gas undergoing an adiabatic process, P ∝ ργ, where γ = CP/CV , and γ

= 5/3 for a monatomic gas, and γ < 5/3 for atoms or molecules with energy levels.

Pressure disturbances propagate as sound waves, and the source velocity c is given

by c2 = dP/dρ.
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If the period of the sound wave is much larger than the cooling time tT , the ki-

netic temperature will remain closely equal to TE, the value in radiative equilibrium,

hence
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In HII regions, dTE

dρ
∼= 0 for ne < 102 cm−3, hence c2 = kTE

µ
, corresponding to γ = 1.

This is thus called the isothermal sound velocity.

Isothermal sound velocity c ∼ 10 km s−1 at 104 K, and ∼100 km s−1 at 106 K.

If a pressure disturbance has a large amplitude, the front of the pulse steepens because

the sound velocity is higher in the compressed region, leading to a nearly discontinuous

shock front.

If a pressure disturbance travels at speed faster than the sound velocity, a shock wave

is formed. Supersonic motion → shocks.



Shock Fronts

Assume a one-dimensional disturbance propagating through a homogeneous medium

with a constant velocity u1. In the reference frame traveling with u1, the flow is steady,

and all quantities are functions of x only.

Case 1: Perfect gas. ~B = 0

Three “jump conditions”:
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If no radiation occurs, the rate of increase of fluid energy = the rate of work done

on the fluid by pressure forces:
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where U is the internal energy of the fluid per unit volume.
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The three jump equations can be solved:
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For an adiabatic shock, γ = 5/3, and ρ2/ρ1 = 4.

**** Adiabatic shocks give a density increase if a factor of 4.

If radiative energy loss is efficient, the cooling behind the shock front leads to

compression. If γ = 1, ρ2/ρ1 = M2 = u2
1/c

2. A large compression is possible.

**** Isothermal shocks can produce large density increases.



Case 2. Hydromagnetic Shocks

If a magnetic field parallel to the shock front is present, the magnetic pressure

needs to be added in the momentum equation.
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In a plasma, the magnetic field lines are “frozen” into the fluid:
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In a strong adiabatic shock, density increases by a factor of 4, the magnetic pres-

sure increases by a factor of 16. If B1 ≤ 3× 10−6 G, B2
2/8π is less than 1/5 of P2 for

typical values of ρ1 and u1 in the ISM. Such a weak magnetic field does not affect the

shock front significantly.

For an isothermal shock, P = ρ c2. If the Alfvén velocity, VA =
√

B2/4πρ,

ahead of the shock is much larger than the isothermal sound velocity c, then ρ2/ρ1 =

21/2u1/VA1. The criteria for a strong shock now requires u1 to be large compared to

VA1, instead of c.

If B = 3×10−6 G, ρ1 in an HI cloud is 4.7×10−23 g cm−3, VA = 1.2 km s−1 ∼ c.

The compression is much less than that for an isothermal shock without magnetic

field.



Observations of Shocks (Practical Questions)

What is the post-shock temperature?

Isothermal Shock - post-shock temperature same as pre-shock temperature.

Adiabatic Shock -
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A strong adiabatic shock has ρ2/ρ1 = 4 and γ = 5/3; therefore,

kT = 3

16
µu2
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In an ionized medium, µ ∼= 0.5 mH = 8.37× 10−25 g

u1 = 300 km s−1 → T = 1× 106 K (e.g. SNRs)

u1 = 3,000 km s−1 → T = 1× 108 K (e.g. fast stellar winds)

Shock Velocity vs Shell Expansion Velocity

For adiabatic shocks, ρ2/ρ1 = 4, and u1/u2 = 4. The observed emission comes

from the post-shock region, where material flows downstream at 1/4 of the shock

velocity u1. Therefore, the observed expansion velocity = u1 − u2 = 3

4
u1.

Shock velocity (u1) =
4

3
× observed expansion velocity.



Stellar Wind Blown Bubbles

Fast stellar winds sweep up the ambient medium to form bubbles. Two theories

have been proposed to explain bubbles.

(1) Energy-conserving bubbles (Weaver et al. 1977, ApJ, 218, 377)

In this model, the shocked stellar wind does not cool; the hot, shocked stellar wind

forms a layer of hot gas whose pressure drives the expansion of the swept-up medium.

See Figures below.

(2) Momentum-conserving bubbles (Steigman, et al. 1975, ApJ, 198, 575)

In this model, shocked stellar wind cools rapidly, and reaches the inner wall of the

shocked interstellar gas shell. That is, the region (b) in the above figure has zero

thickness.

For energy-conserving bubbles,
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where r is the radius, Ṁ is the stellar wind mass loss rate, Vw is the terminal

stellar wind velocity, ρ0 is the ambient density, and t is the time.



Bubble Observations vs Theories

According to theory, a massive star with strong stellar wind in a dense medium

will blow a bubble; however, not every O star is seen in a bubble. To solve this

puzzle, N11B has been selected to search for bubbles around O stars. N11B is an

HII region ionized by a young OB association that hosts O3 stars. Hubble Space

Telescope image of N11B (shown below) does not show obvious bubbles.

High-dispersion spectra were obtained of regions around O stars in N11B. It is then

found that O stars are indeed inside expanding shells, the presumed bubbles. The

expansion velocities of these shells are 15–25 km s−1, not too much higher than the

sound velocity of 10 km s−1. The outer shocks of these bubbles are not very strong,

thus no strong compression is expected to produce clear shell morphology.

X-ray observations of wind-blown bubbles show that both the hot gas tempera-

ture and X-ray luminosity are lower than expected from theories. It is likely that the

ambient medium is clumpy and the evaporation and ablation of the clumps “poison”

the hot interior, lowering the temperature and X-ray emissivity.

The interface between hot interior and the cold shell has been detected in O VI

and N V absorption lines. Few high-quality observations exist.

Detailed observations of size, expansion velocities, and stellar winds of superbub-

bles also show discrepancy from models. Observations of bubbles and superbubbles

show expansion velocities slower than those expected from the observed stellar wind

input and shell size. Superbubble ages implied from the size and expansion velocities

are also smaller than the stellar ages of the central OB associations. There are still

many puzzles about bubbles and superbubbles.



Supernova Remnants

Supernova (SN) ejecta interacts with the ambient circumstellar/interstellar medium.

A shock will begin to form when the ejecta has swept over a distance comparable to

the mean free path. Protons moving through a neutral HI medium with N(HI) = 1.2

cm−3 at a velocity of 20,000 km s−1 have a mean free path of ∼500 pc, and the mean

travel time is 2.5 × 104 yr. If this is true, SN ejecta can expand out of the galactic

disk without forming any shocks. Magnetic field must be taken into account. For a

proton moving across a 3 µG magnetic field at 20,000 km s−1, its gyration radius is

only 1011 cm (∼ 3× 10−8 pc). Thus, a hydromagnetic shock will form.

The evolution of a supernova remnant (SNR) is divided theoretically (simplisti-

cally ) into four stages:

(1) free expansion;

(2) Sedov phase, when swept-up mass ∼ ejecta mass, adiabatic shock;

(3) snowplow phase, when cooling is important; isothermal shock; expansion is driven

by momentum;

(4) dissipated into the ISM.

It is now realized that “free expansion” is expanding into the circumstellar ma-

terial ejected by the star before the SN explosion. Roger Chevalier was the first

one taking into account the circumstellar material. The first stage is thus called

“Chevalier phase” sometimes by SNR researchers.

Sedov 1959, Similarity and Dimensional Methods in Mechanics

A point blast with adiabatic expansion, γ = 5/3 for a perfect gas, the similarity

solution is:
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where t is the age in units of year, E51 is the explosion energy in units of 1051 ergs

(i.e. 1 foe).

During the Sedov phase, the kinetic energy of the SNR shell is ∼30% the initial

explosion energy E0. The shell density is ns = 4n0.



During the snowplow phase, the expansion is initially driven by the pressure of

the SNR interior, and finally by just the momentum of the shell. Toward the end of

the snowplow phase, the shell kinetic energy is only 3-4% of E0.
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