Dynamical Effects of Stars: Gas Shells of Different Sizes You-Hua Chu University of Illinois

Shock-Production of Hot Plasma

Supernova remnant shocks: $10^2 - 10^4$ km/s Fast stellar winds: 1000 - 3000 km/s Shocked Stellar Winds in PNe, Bubbles, Superbubbles (Milky Way Objects)

Interstellar & Circumstellar Bubbles

interstellar bubble	circumstellar nebula	circumstellar bubble
↓	↓	\checkmark
$10^{-7}~M_{\odot}/yr$	$10^{-4}~M_{\odot}/yr$	$10^{-5}~M_{\odot}/yr$
1000 - 2000 km/s	10 - 50 km/s	2000 - 3000 km/s
fast wind	slow wind	fast wind
O star \rightarrow	RSG →	WR (35 M_{\odot})
O star \rightarrow	LBV →	WR (60 M_{\odot})

Low-mass $\star \rightarrow RG, AGB \rightarrow planetary neb.$

Interstellar Bubble

Weaver et al. 1977

Schematic Bubble Structure

Weaver et al. 1977

Variations of Bubble Models

Superbubble Model

- intermittent SNe averaged over time ~ stellar wind
- blown out of galactic plane (Mac Low & McCray 1998)
- blown in magnetized medium (Tomisaka 1992)
- hot interior enriched with O and Fe (Silich et al. 2001)

Circumstellar Bubble Model

- ambient medium with density $\propto r^{\text{-2}}$
- wind velocity and mass loss rate are functions of time
- hydrodynamic model (García-Segura et al. 1996)
- radiative hydrodynamic model (Freyer et al. 2006)
- mass -loading by evaporation/ablation (Pittard et al. 2001)

Planetary Nebula model

- similar to circumstellar bubbles
- stellar radiation is a strong function of time
- Schönberner, Steffen, Warmuth 2006

Dense Swept-up Shell

- Why don't we see more interstellar bubbles?

The Bubble Nebula

Copyright ©2002-2005 by Russell Croman

N11B - Young OB Association LH10

Echellogram of [N II] 6583 Line

Bubble Size ~ 15 pc Exp Vel ~ 15-20 km/s

Ionized shell (H II)

- sound vel ~ 10 km/s
- no strong shocks
- no large density jump
- no limb-brightening

Neutral shell (H I)

- sound vel ~ 1 km/s
- large density jump
- limb-brightening
- frequently seen

Naze, et al. 2001, AJ, 122, 921

Hot Gas in Bubble Interiors

X-ray observations

Young PNe with closed inner shell or lobes; P Cygni stellar line profiles; low foreground absorption; 1-3 x 10⁶ K.

NGC 2392 -- $V_w = 300 \text{ km/s}$, T = 2 x 10⁶ K NGC 6543 -- $V_w = 1450 \text{ km/s}$, T = 1.6 x 10⁶ K

Hot Gas in the Born-Again PN A30

Circumstellar Bubble NGC 6888

Toalá et al. (2013, in prep)

Circumstellar Bubble S308

Red: Hα Green: [O III] Blue: X-ray

Chu et al. (2003); Toalá et al. (2012)

Hot Gas in Circumstellar Bubbles

The low temperatures can be achieved by thermal conduction, mass-loading, etc. Soft X-rays can be absorbed => few bubbles detected

Hot Gas in Circumstellar Bubbles

However, the hot, shocked winds should have been detected. The absence of hotter gas is puzzling. (Arthur 2012)

Hot Gas in the Orion Nebula

 $T \sim 2 \times 10^{6} \text{ K}$ Lx ~ 5.5 × 10³¹ erg/s (Güdel et al. 2008)

XMM-Newton EPIC + Spitzer IRAC

Hot Gas in the Omega Superbubble

Two young superbubbles are detected in X-rays by Chandra: Omega and (Rosette)

ROSAT - Dunne et al. 2003

Chandra - Townsley et al. 2003

Hot Gas in Wind-blown Bubbles

Detection of hot gas associated with fast winds
 - 12 PNe, 2 WR bubbles, 2 superbubbles*
 (* Townsley et al. 2003; Güdel et al. 2008)

Properties of the hot gas:

	$T_{e} [10^{6} K]$	$N_{e} \ [cm^{-3}]$	$L_X [erg/s]$
PN	$1-3 \times 10^{6}$	100	10^{31} - 10^{32}
WR	$1-2 \times 10^{6}$	1	$10^{33} - 10^{34}$
M17	7×10^{6}	0.3	10^{33}
Urion	$2 \times 10^{\circ}$	0.2-0.5	5×10^{51}

Conduction Layer in Bubbles

- Probe the thermal conduction layer using high ions produced by thermal collisions

Ionization Potentials (in eV)

Excitation potential of O VI3kT/2 = 129 eV= Ionization potential of O Vfor $T = 10^6 \text{ K}$

		-	TT.	III	IV	V	VI
At	om	1	ш	m			
1	Н	13.598 44					
2	He	24.587 41	54.41778				
3	Li	5.39172	75.640 18	122.454			
Δ	Be	9.322.63	18.211 16	153.897	217.713		
5	B	8 298 03	25.154 84	37.931	259.366	340.22	
5	C	11 260 30	24,383 32	47.888	64.492	392.08	489.98
0	N	14 534 14	29 601 3	47.449	77.472	97.89	552.06
1	N	12 619 06	35 117 30	54,936	77.413	113.90	138.12
8	0	13.018.00	24 070 82	62,708	87,140	114.24	157.17
8	O F	13.61806	35.117 30 34.970 82	54.936 62.708	87.140	114.24	157.17

C IV 1548,1550; N V 1238,1240; O VI 1031,1037

FUSE Observations of O VI in NGC 6543

 $8.629 \times 10^{-6} \,\bar{\Omega}_{\rm O\,VI}(T)$ $T \frac{V}{4\pi d^2}$ $e^{-\chi/kT}$ $I_{\rm OVI} = n_{\rm e} n_{\rm OVI} h \nu$ $T^{1/2}$ q_i

HST STIS Obs of N V in NGC 6543

Long-slit spectra

Guerrero et al. In prep

Best Galaxy to Study Supershells

The Large Magellanic Cloud

MCELS (H α , [O III], [S II])

The Large Magellanic Cloud

Ev	olution of	Stars and ISN	
Timeline	Star/SN	ISM	
2-3 Myr ↓ 5 Mur	O > CN	HII region	
J IVIYI	0-> 3N		
10Myr ↓	B -> SN	recombining	
>15 Myr		HI shell (10 ² pc)	SGS (10 ³ pc)

MCELS: Smith, Points

Bubbles, SNRs ~ 10 - 50 pc $\sim 10^3 - 10^5 \text{ yr}$ (single star) **Superbubbles** ~ 100 pc $\sim 10^{6} \, {\rm yr}$ (multiple stars) Supergiant shells ~ 1000 pc ~ 10⁷ yr (multi generations)

> R - Hα G - [S II] B - [O III]

MCELS: Smith, Points

.

Supergiant shells ~ 1000 pc ~ 10⁷ yr (multi generations)

> R - Hα G - [S II] B - [O III]

Signatures of Classical SNRs

- Bright X-ray emission
 L_x > 10³⁵ ergs/s
- > Nonthermal radio emission $S_{\nu} \propto \nu^{-\alpha} \qquad \alpha \sim 0.5 - 0.8$
- Enhanced [S II] emission
 [S II]/Hα > 0.45
- > High-velocity gas (H α line) ionized gas $\Delta V > 100$ km/s

Example SNRs in the LMC

Size ~ 20pc N49 (B-star progenitor)

Blue: X-ray Other: optical/IR

N63A (O-star progenitor)

Identification of Type Ia SNRs

Balmer-dominated

SN ejecta running into a neutral medium; collisionless shock (Chevalier et al. 1980)

SNR 0509-67.5

 $H\alpha + X-ray$

Size ~ 7 pc

Identification of Type Ia SNRs

Balmer-dominated X-ray Kα emission of Si,S,Ar,Ca,Fe

Identification of Type Ia SNRs

Balmer-dominated X-ray Kα emission of Si,S,Ar,Ca,Fe

MCELS: Smith, Points

500 рс

Bubbles, SNRs $\sim 10 - 50 \text{ pc}$ $\sim 10^3 - 10^5 \text{ yr}$

MCELS: Smith, Points

Bubbles, SNRs ~ 10 - 50 pc $\sim 10^3 - 10^5 \text{ yr}$ (single star) **Superbubbles** ~ 100 pc $\sim 10^{6} \, {\rm yr}$ (multiple stars) Supergiant shells ~ 1000 pc ~ 10⁷ yr (multi generations)

> R - Hα G - [S II] B - [O III]

X-ray-bright Superbubbles

Hot Gas in Interstellar Structures

1400 pc

Chandra X-ray Image of Hot Gas in 30 Dor

Townsley et al. (2006)

MCPS (UBVI)

2MASS

SAGE (3.6, 4.5, 5.8, 8.0, 24 μm)

MCELS (H α , [O III], [S II])

ATCA+Parkes (H I)

NANTEN (CO)

