Astronomy 405: Solar System and the ISM (Spring 2013) Homework 9, due on April 8

- 1. Photoionized HII regions usually have electron temperatures $\sim 10^4$ K. At such temperatures hydrogen's recombination coefficients are $\alpha_A = 4.18 \times 10^{-13}$ cm³ s⁻¹, and $\alpha_B = 2.59 \times 10^{-13}$ cm³ s⁻¹, and He⁺'s recombination coefficient is $\alpha_B = 2.73 \times 10^{-13}$ cm³. An O3V star has Q(H⁰) = 7×10^{49} photons s⁻¹ and Q(He⁰) = 2.6×10^{49} photons s⁻¹. The interstellar medium around the star has a density of 100 H-atom cm⁻³, and a H:He ratio of 10:1 (that is, 1 He atom for every 10 H atoms).
 - (a) What is the mean free path of a photon with energy $h\nu = 14 \text{ eV}$?
 - (b) What is the mean free path of a photon with energy $h\nu = 25$ eV?
 - (c) What is the size (in pc) of its HII region?
 - (d) what is the mass (in M_{\odot}) of its HII region?
 - (e) What is the size (in pc) of its HeII region?
 - (f) Compare the sizes of its HII region and HeII region. If they are similar, calculate the HII region size again use $N_{\rm e}=N_{\rm H}+N_{\rm He}$.
- 2. Repeat Problem 1 for a B0III star with $Q(H^0) = 1.3 \times 10^{48}$ photons s⁻¹ and $Q(He^0) = 1.1 \times 10^{46}$ photons s⁻¹.
 - (a) What is the size (in pc) of its HII region?
 - (b) what is the mass (in M_{\odot}) of its HII region?
 - (c) What is the size (in pc) of its HeII region?
 - (d) Compare the sizes of its HII region and HeII region. If they are similar, calculate the HII region size again use $N_{\rm e}=N_{\rm H}+N_{\rm He}$.
- 3. The energy level of a H-like atom is $E_n = -13.6Z^2/n^2$ eV, where Z is the electric charge of the nucleus. What transition does HeII $\lambda 4686\text{\AA}$ line correspond to? How does the electron in He⁺ get to this upper energy level?
- 4. Assume that the radius of a white dwarf $R_* = 1$ R_{\oplus} , and use the Planck function, $B_{\nu}(T) = \frac{2h\nu^3/c^2}{e^{h\nu/kT}-1}$, for the white dwarf's spectrum.
 - (a) Calculate the He⁺-ionizing flux, Q(He⁺) = He⁺-ionizing photons emitted per second, for white dwarfs of temperatures 25,000 K, 50,000 K, and 100,000 K. Note that Q(He⁺) = $4\pi R_*^2 \int \frac{\pi B_{\nu}}{h\nu} d\nu$, integrated from $h\nu = 54.5$ eV to ∞ . (Use table of integrals, Mathematica or whatever numerical methods you like.)
 - (b) If the white dwarf is in a nebula of density 1 H-atom cm⁻³, what is the Strömgren radius of the He⁺² zone? Do this for white dwarfs of the three temperatures above. $(\alpha_B(\text{He}^+) \sim 2.5 \times 10^{-13} \text{ cm}^3 \text{ s}^{-1})$