Astronomy 405 (Spring 2013) Homework 3 (due on Feb 8) #### Problem 1. Use a uniform solid body approximation for the Earth. Its moment of inertia is $I = (2/5)MR^2$, and its rotational kinetic energy is $K = (1/2)I\omega^2$. - (a) Due to tidal friction, the Earth's rotation is slowing down and its rotational period is lengthening at a rate of 0.0016 s/century. What is the rate of rotational energy release of the Earth? - (b) If the rotational energy release is radiated away as heat uniformly over the surface of the Earth, what is the average flux (in units of W m⁻²)? - (c) How much heating from the Sun does the Earth get (in units of W)? - (d) Compare the answers from (a) and (c). Which source is more important? #### Problem 2. Optical depth can be thought of as the number of mean free paths from the original position to the surface. For a planet atmosphere with optical depth τ , you can divide the atmosphere into τ layers with a unity optical depth in each layer. Each layer only receives the emission from the adjacent layers. - (a) What is the temperature at the top of this planet's atmosphere at subsolar location? Assume no circulation of air to distribute heat over the entire surface. Express T_{top} in terms of stellar luminosity L^* , distance to the star D, and albedo a. - (b) Show that the temperature on the surface of the planet (under an atmosphere of optical depth τ) is $T_{\rm surf} = (1 + \tau)^{1/4} T_{\rm top}$. ### Problem 3. Planet X orbits around the Sun with an orbital period identical to its rotational period. Assuming no atmosphere on Planet X. What is the temperature at position A (see the diagram above)? Express the answer in terms of the Sun's R_{\odot} and T_{\odot} and Planet X's orbital radius D and albedo a. | ¹⁴⁷ ₆₂ Sm/ ¹⁴⁴ ₆₀ Nd | $^{143}_{60}$ Nd $/^{144}_{60}$ Nd | |--|------------------------------------| | 0.1847 | 0.511721 ± 18 | | 0.1963 | 0.511998 ± 16 | | 0.1980 | 0.512035 ± 21 | | 0.2061 | 0.512238 ± 17 | | 0.2715 | 0.513788 ± 15 | | 0.2879 | 0.514154 ± 17 | ## Problem 4. $^{147}_{62} Sm$ decays into $^{143}_{60} Nd$ with a half-life of $1.06 x 10^{11}$ yr. The abundances of these atoms can be used to date the age of a rock. The Table above shows abundance ratios $^{147}_{62} Sm/^{144}_{60} Nd$ and $^{143}_{60} Nd/^{144}_{60} Nd$ measured from different parts of a Moon rock. - (a) What kind of decay turns ¹⁴⁷₆₂Sm into ¹⁴³₆₀Nd? - (b) Show that $N(^{143}_{60}\text{Nd}) / N(^{144}_{60}\text{Nd}) = (e^{\lambda t} 1) N(^{147}_{62}\text{Sm}) / N(^{144}_{60}\text{Nd}) + N_i(^{143}_{60}\text{Nd}) / N(^{144}_{60}\text{Nd})$ where N(X) is the current number of the atoms of species X, $N_i(X)$ is the initial number of atoms of species X, and λ is $\ln 2 / \tau_{1/2}$ and $\tau_{1/2}$ is the half-life of $^{147}_{62}\text{Sm}$. - (c) Graph ¹⁴⁷₆₂Sm/¹⁴⁴₆₀Nd against ¹⁴³₆₀Nd/¹⁴⁴₆₀Nd using the data from the Table above. - (d) Use the plot in (c) to determine the age of the Moon rock. - (e) Why do we bother measuring ¹⁴⁴₆₀Nd and use the abundance ratios in this experiment?