Astronomy 405: Solar System and the ISM (Spring 2013) Homework 10, due on April 15

- 1. (a) Show that the collisional de-excitation rate is $N_e N_2 q_{21} = N_e N_2 \frac{8.629 \times 10^{-6}}{T^{1/2}} \frac{\Omega(1,2)}{\omega_2}$
 - (b) Show that the collisional excitation rate is $N_e N_1 q_{12} = N_e N_1 \frac{8.629 \times 10^{-6}}{T^{1/2}} \frac{\Omega(1,2)}{\omega_1} e^{-\chi/kT}$. [Hint: Follow the derivation of the collisional de-excitation rate. Integrate only from the threshold velocity to infinity. Use the definitions given in the lecture notes.]
- 2. Show that the critical density of OIII 1D_2 is $N_{\rm e}=7\times10^5~{\rm cm}^{-3}$.
- 3. The H α emission from an optically-thick nebula can be used to determine properties of its ionizing source.
 - (a) The Tarantula Nebula (30 Doradus) has an H α luminosity of 1.5×10^{40} ergs s⁻¹. What is the required ionizing flux of the Tarantula Nebula?
 - (b) Can the Tarantula Nebula be ionized by a single star? If not, how many O5 stars are needed to provide this ionizing flux? (O5 star has $Q(H^0) = 10^{49.67}$ photons/s)
 - (c) Show that roughly every 3.5 recombinations of hydrogen lead to the emission of 1 ${\rm H}\alpha$ photon.
- 4. The Table below gives spectra of three ionized nebulae.
 - (a) Use the [O III] lines and the [N II] lines, if available, to determine electron temperatures for Neb 1, Neb 2, and Neb 3.
 - (b) Use [O II] and [S II] lines to determine electron densities of Neb 2.
 - (c) Neb 3 has tricky line ratios. Let's assume that Neb 3 has an electron temperature of 20,000 K. What is the electron density of Neb 3?
 - (d) Why does Neb 3 have such weak [O III] λ 5007 line?

λ (Å)	Line ID	Nebula 1	Nebula 2	Nebula 3
3726	[O II]	_	19	_
3729	[O II]	_	22	_
4363	[O III]	8	1.2	13
4686	He II	_	_	7
4861	$_{\mathrm{H}\beta}$	100	100	100
4959	[O III]	112	74	5
5007	[O III]	317	223	17
5755	[N II]	_	2.2	9
6548	[N II]	16	72	5
6563	$H\alpha$	281	285	285
6583	[N II]	48	229	14
6717	[S II]	<11	7.5	_
6731	[S II]	<8	6.8	_