
Astronomy 404 November 20, 2013

The collapse of the core of a massive star starts with the **photodisintegration of Fe and He**, which consumes thermal energy. The subsequent **capture of** e^- **by** p^+ reduced the number of electrons that provided degeneracy pressure. These events lead to the **core collapse**. The collapse produces a neutron star $(M_{ZAMS} < 25 \text{ M}_{\odot})$ or a black hole $(M_{ZAMS} > 25 \text{ M}_{\odot})$.

Supernova explosion releases $\sim 10^{46}$ J of energy, but only 1% is in the form of kinetic energy in the ejecta, 0.1% in radiation, and 99% in neutrinos.

s-process and **r-process nucleosynthesis**. Compare the neutron capture timescale with the beta-decay time scale. Stellar interiors have s-process reactions and supernovae have r-process reactions.

Gamma-ray bursts (GRBs) are at cosmological distances. The long-soft GRBs are associated with energetic supernovae, called collapsars or hypernovae. Rapid rotation of a collapsing core leads to an accretion disk and bipolar relativistic jets.

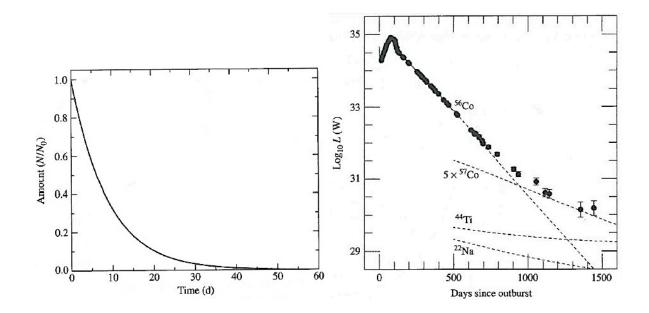
Light Curves of SNe and the Radioactive Decay of the Ejecta

The most common type of core-collapse SNe is Type II-P. The SN light is due largely to the energy deposited by the shock into the H-rich envelope. The gas in the envelope is shock-ionized and recombines to release energy at a nearly constant temperature ~ 5000 K. The plateau of the light curve is further supported by energy deposited in the envelope by the radioactive decay of unstable nuclei produced in the explosive nucleosynthesis (r-process reactions).

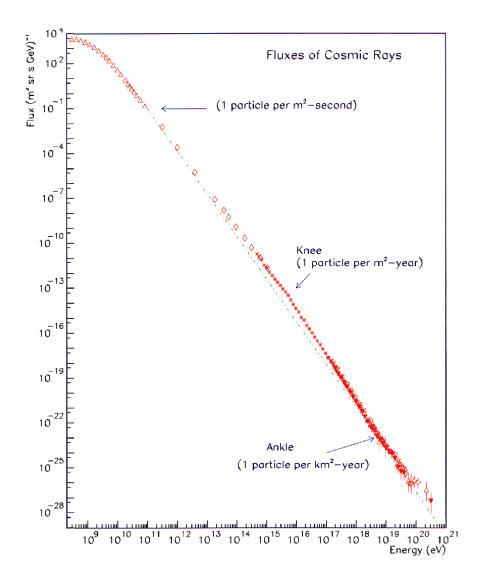
The half-life of
$${}^{56}_{28}\text{Ni}$$
 is $\tau_{1/2} = 6.1 \text{ days}$
 ${}^{56}_{27}\text{Co}$ is $\tau_{1/2} = 77.7 \text{ days}$
 ${}^{57}_{27}\text{Co}$ is $\tau_{1/2} = 271 \text{ days}$
 ${}^{11}_{11}\text{Na}$ is $\tau_{1/2} = 2.6 \text{ years}$
 ${}^{44}_{22}\text{Ti}$ is $\tau_{1/2} = 47 \text{ years}$
 ${}^{56}_{28}\text{Ni} \rightarrow {}^{56}_{27}\text{Co} + e^+ + \nu_e + \gamma$
 ${}^{56}_{27}\text{Co} \rightarrow {}^{56}_{26}\text{Fe} + e^+ + \nu_e + \gamma$
 ${}^{56}_{27}\text{Co} \rightarrow {}^{56}_{26}\text{Fe} + e^+ + \nu_e + \gamma$
 ${}^{56}_{27}\text{Co} \rightarrow {}^{56}_{26}\text{Fe} + e^+ + \nu_e + \gamma$

The beta decay of $^{56}_{28}Ni$ generates energy, which is deposited in the optically thick expanding shell before radiated away. This "holds up" the light curve for a period of time, extending the observed plateau in light curve. After the plateau, the deta decay of $^{56}_{27}Co}$ provides the energy of the SN light.

Progenitors of Type II-L SNe have reduced hydrogen envelopes, which are not optically thick to dam up the radiation for a plateau in light curve. Their light curves show signatures of radioactive decay almost immediately.

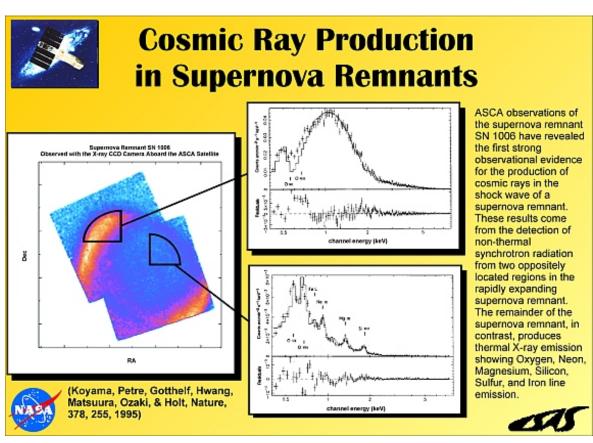

Radioactive decay: there is 50% chance that any given atom will decay during a time interval of half-life $\tau_{1/2}$

$$\frac{dN}{dt} = -\lambda N$$


$$N(t) = N_0 e^{-\lambda t}, \qquad \lambda = \frac{\ln 2}{\tau_{1/2}}$$
where

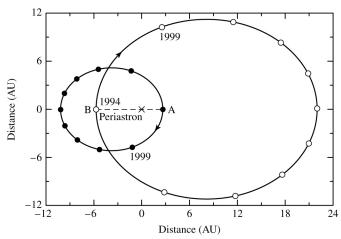
As $L \propto dN/dt$, the slope of the light curve is

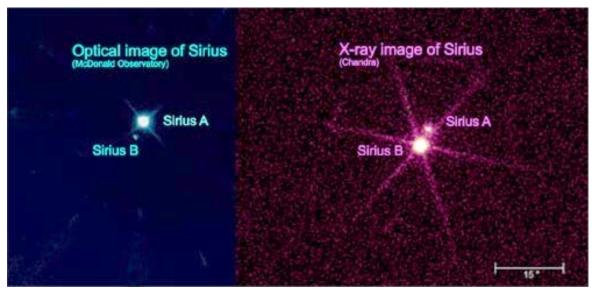
$$\frac{d \log_{10} L}{dt} = -0.434\lambda \qquad \frac{d M_{\text{bol}}}{dt} = 1.086\lambda$$


Cosmic Rays

When a charged particle goes upstream through a diffusive shock with a magnetic field, it will gain energy. If magnetic field moves in opposite direction of the cosmic ray particle, it gains energy. This is Fermi acceleration.

 $F_B = q \ v \ B$, $\gamma m \ v^2 \ / \ r = q \ v \ B$ The Larmor radius (gyroradius) is $r = \gamma m v / (qB)$. When $v \sim c$, $r = mc^2 / (qcB)$. For $B = 10^{-10}$ T, a proton with an energy of 10^{15} eV, the Larmor radius is ~ 1 pc. Cosmic rays with energies less than $\sim 10^{15}$ eV may be produced in supernova remnant shocks.




Chapter 16. The Degenerate Remnants of Stars

Sirius is the brightest star in the sky. It has a parallax of 0.379".

Sirius is a binary system. Sirius A has 2.5 $\rm M_{\odot}$ and is an A1V star. Sirius B has 1 $\rm M_{\odot}$, but it appears much hotter than Sirius A. The $T_{\rm eff}$ of Sirius A is 9910 K, and Sirius B is 27,000 K. The temperature and luminosity of Sirius B implies that its radius is $\sim 0.008~\rm R_{\odot}$, comparable to the Earth's radius! White dwarf.

In optical wavelengths, Sirius A dominates the emission, but in X-rays, Sirius B dominates the emission.

Sirius B was originally a \sim 5 $\rm M_{\odot}$ star. Some of its mass loss has been accreted by Sirius A, which shows higher Fe abundance on its surface.

The surface gravity on a white dwarf is \sim 500,000 times that on the surface of the Earth! Spectra show pressure-broadened line profiles.

Classes of White Dwarf Stars

White dwarfs are not "white". Depending on their temperatures, they can be of any colors. [Blackbody spectrum modified by absorption lines from atmospheres.]

DA - show broadened H lines; ~2/3 of all WDs are DA

DB - show only He absorption lines; ~8% of WDs are DB

DC - featureless spectrum, no lines; ~14% of WDs are DC

DO - show C features

DZ - show metal lines