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Stellar Pulsation

The radial oscillations of a pulsating star are the result of sound
waves resonating in the star’s interior.

Period-mean density relation:
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Fundamental mode First overtone Second overtone

To drive pulsation, a layer have to reach maximum pressure after
the maximum compression.

Nuclear € mechanism (in the core)

k- and y-mechanisms (partial ionization zone)

Temperature > 7500 K, not enough mass to drive pulsation
Temperature < 4500 K, convective envelope dampens pulsation

Pulsations of cool stars (LPV, classical Cepheids, RR Lyrae) are
driven by H and/or He partial ionization zones; pulsation of hot
stars (3 Cephei ) are driven by Fe partial ionization zones.



Chapter 15. The Fate of Massive Stars
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Evolutionary tracks: solid line — with initial Vrotation = 300 km/s
dotted line - no rotation
Models by Meynet & Maeder (2003) with Z = 0.02 and mass loss.
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RSG - red supergiant BSG - blue supergiant
LBV - luminous blue variable WR - Wolf-Rayet stars
Humphreys-Davidson Luminosity Limit (blue dashed line)



Luminous Blue Variable (LBV)
The most famous LBV is 1 Carinae.

Historical Light Curve of Eta Carinae
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Below is the X-ray light curve of 1 Car. The X-ray emission
originates from colliding winds. m Car has a massive binary
companion that has a fast stellar wind. The X-ray light curve
shows the binary period.
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n Caris a LBV. P Cygni is also a LBV. Many other variable blue
stars are called LBVs, but they are not as luminous as n Car.
Humphreys and Davidson suggest to call them S Dor variables.

LBVs lose mass possibly because they are close to Lga. The mass
loss from LBVs form circumstellar nebulae.



Wolf-Rayet Stars

Wolf-Rayet (WR) stars have three different sequences:
WN - nitrogen sequence

WC - carbon sequence

WO - oxygen sequence

Within each sequence, subtypes are defined.

WN2-WNS5 early-type WN (WNE)
WN 6 - WN9 late-type WN (WNL)
WC4-WC6 early-type WC (WCE)
WC7-WC9 late-type WC (WCL)

WR stars have mass loss rate ~ 10> M yr! and wind velocity of
800-3000 km s-1.

The effective temperature of WR stars ranges from 25,000 K to
100,000 K. The earliest WN stars (WNZ2) are hot enough to
photoionize helium to He*? (or He III). These nebulae would emit
He II 468.6 nm line.

WN - WC - WO represent a sequence of different amount of
surface layer has been stripped to reveal the nucleosynthesized
material.

Peter Conti suggested the following evolutionary paths (1976):
M > 85Mg : 0 - Of - LBV - WN — WC — SN

40Mg < M < 85Mp : O — Of - WN — WC — SN
25Mg < M < 40 Mg : O - RSG — WN — WC — SN
20Mp < M < 25Mg : O — RSG - WN — SN
10Mg < M < 20 Mg : O - RSG — BSG — SN



The Classification of Supernovae

Historical supernovae (SNe):
SN 1006, SN 1054 (Crab Nebula), Tycho’s SN,
Kepler’s SN in the Milky Way and SN 1987A in the LMC.

SNe show different spectra at the peak of their light curve:
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Spectra of SNe near

12 maximum light (~1 week)
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Type I - no hydrogen lines
Ia - shows Si lines
Ib - no Si lines, but shows He lines
Ic - no Silines, and no He lines

Type Il - show hydrogen lines

Type la SNe result from white dwarfs and the others are from
core-collapse of massive stars. Type la SNe at peak (Mg =-18.4)
are ~1.5 mag brighter than the core-collapse SNe.
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Type II-P supernovae
blue light curve
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Supernova Classification Scheme
(spectra at maximum light)




