## Astronomy 404 August 30, 2013

**Review of last lecture:** 

- Planck function

$$B_{\lambda}(T) = \frac{2hc^2/\lambda^5}{e^{hc/\lambda kT} - 1}.$$

- Wien's displacement law

 $\lambda_{\rm max} T = 0.00289775 \text{ m K}$ 

- Stefan-Boltzmann Equation

$$L = A \sigma T^4 = 4 \pi R^2 \sigma T^4$$

- Color indexes

U-B, B-V, V-I, J-K, V-K, etc.

- Stars with different spectral types have different colors

We have a 300 ks Chandra X-ray observation of a region in the Large Magellanic Cloud (DM = 18.5). Many point sources are detected, and some have optical counterparts as stars. Are these stars in the LMC or the Galaxy?

| Star 54  | <b>Star 145</b> | <b>Star109</b> |
|----------|-----------------|----------------|
| U=20.959 | <b>U=17.78</b>  | <b>U=20.11</b> |
| B=22.031 | B=18.23         | B=19.77        |
| V=21.023 | V=18.30         | V=19.30        |
| I=18.075 | I=18.35         | I=18.42        |
| J=16.61  | <b>J=18.50</b>  | J=17.66        |
| H=16.07  | H=18.22         | H=17.15        |
| K=15.86  |                 | K=17.09        |

#### **Chapter 5.** The Interaction of Light and Matter

#### **Spectral Lines**

1766-1828 William Wollaston
1787-1826 Joseph von Fraunhofer
1811-1899 Robert Bunsen
1824-1887 Gustav Kirchhoff

#### Kirchhoff's laws of spectral analysis

- Hot, dense gas or solid
   => continuum emission
- 2. Hot, diffuse gas => emission lines
- Cool, diffuse gas in front of a continuum source
   => absorption lines

dark lines in solar spectrum cataloged 475 dark lines burner produced colorless flame spectra of flames, identified 70 dark lines in solar spectrum



Star: photosphere produces continuum, atmosphere produces absorption lines

## **High-Resolution Solar Spectrum (NOAO/NSO)**



#### **Applications of Stellar Spectra**

1. Elemental composition - e.g. H, He, Na, Fe, Mg, etc. in solar spectrum



- 2. Radial velocity  $\Delta \lambda / \lambda_{rest} = v_r / c$
- 3. Temperature, density, and pressure of the stellar atmosphere (Chap. 9)
- 4. Magnetic field on stellar surface Zeeman splitting.

How do we interpret the spectra?

We need to understand the nature of light itself, especially when it interacts with matter.

#### **Photons**

# Dual nature of light - propagates through space like *waves*, interacts with matter like *particles*.

**Photoelectric effect** 

Light shines on metal surface and kicks out electrons. The kinetic energy of the electrons does not depend on the intensity of light.

Einstein suggested that light consists of a stream of massless particles called "photons" and the energy of a photon is  $E_{\text{photon}} = h v = h c / \lambda$ .  $h = 6.626 \times 10^{-34} \text{ J s} = 4.135 \times 10^{-15} \text{ eV s}$ 

$$K_{\text{max}} = E_{\text{photon}} - \phi = h c / \lambda - \phi$$

 $\phi$  the minimum binding energy of an electron  $K_{max}$  the maximum kinetic energy of the ejected electron Cutoff frequency  $v_c = \phi/h$ ; cutoff wavelength  $\lambda_c = hc/\phi$ Einstein was awarded the 1921 Nobel Prize for the photoelectric effect. Compton Effect (1892-1962 Arthur Compton)

A photon collides with an electron like a particle with

$$E_{\text{photon}} = h v = h c / \lambda = p c$$
,

where p is the momentum of the photon.



Conservation of (relativisitic) momentum and energy  $\Rightarrow$ 

$$\Delta \lambda = \lambda_f - \lambda_i = \frac{h}{m_e c} (1 - \cos \theta)$$

Compton wavelength  $\lambda_{\rm C} = h / m_e c$ = 0.00243 nm

~ 30 times smaller than the X-ray photons used

#### The Bohr Model of the Atom

**Emission lines and absorption lines are apparently associated with** interactions between light and matter => how are they formed?

Johann Balmer (1825-1898) found that the series of hydrogen lines at

| 656.3 nm        | red    | Ηα |                      |
|-----------------|--------|----|----------------------|
| <b>486.1 nm</b> | teal   | Ηβ | <b>Balmer series</b> |
| <b>434.0 nm</b> | blue   | Ηγ | <b>Balmer lines</b>  |
| <b>410.2 nm</b> | violet | Ηδ |                      |

can be reproduced by the formula:

 $1/\lambda = R_H (1/4 - 1/n^2)$ 

where  $R_{H}$  is the experimentally determined Rydberg constant  $R_H = 1.096 \times 10^7 \text{ m}^{-1}$ n = 3 gives  $H\alpha$ ; n = 4 gives  $H\beta$ ; n = 5 gives  $H\gamma$ ...

 $1/\lambda = R_H (1/m^2 - 1/n^2)$  m = 1 Lyman (ultraviolet) 2 Balmer (visible) **3** Paschen (infrared)

It was known that an H atom has a positively charged nucleus and a negatively charged electron. If the electron orbits around the nucleus like a planet around a star, the electron would lose energy through radiation and spiral into the nucleus in 10<sup>-8</sup> s.

Niels Bohr (1885-1962)

- The dimensions of Planck's constant,  $J \times s$ , are equivalent to  $kg \times m s^{-1} \times m$ , the units of angular momentum.
- Perhaps the angular momentum or the orbiting electron was quantized...  $L = n h / 2\pi = n \hbar$
- Electon orbits around the nucleus like a planet around a star, except that the gravitational force is replaced by the electric force.
- Energy levels of a hydrogen atom are:

 $E_n = -13.6 \text{ eV} n^{-2}$ 

### What do Kirchhoff's laws mean?

Kirchhoff's laws of spectral analysis

- Hot, dense gas or solid
   => blackbody radiation
- 2. Hot, diffuse gas
  - => downward transition between energy elevels
- 3. Cool, diffuse gas in front of a continuum source
  - => upward transition between energy levels

