Astronomy 404 October 18, 2013

- Parker Wind Model
 - Assumes an isothermal corona, simplified HSE
 - Why does this model fail?
- *Dynamic* mass flow of particles from the corona, the system is not *closed*

Re-write acceleration as a velocity flow (dv/dr) and consider the force of gravity and pressure exerted by the gas:

$$\frac{d^2r}{dt^2} = \frac{dv}{dt} = \frac{dv}{dr}\frac{dr}{dt} = v\frac{dv}{dr}$$

$$\rho v\frac{dv}{dr} = -\frac{dP}{dr} - G\frac{M_r\rho}{r^2}$$
conservation of mass flow (dM = rho * dV)

$$dV \sim \text{function of dr} \sim v \text{ dt}$$

 $4\pi r^2 \rho v = \text{constant}$

 \rightarrow deriv both sides

$$\frac{d(\rho v r^2)}{dr} = 0.$$

Outward pressure waves via convection, F_E flux (v_s) of wave energy (rho * v_w^2)

• What happens if the density rapidly declines?

$$F_E = \frac{1}{2} \rho v_w^2 v_s$$

$$v_s = \sqrt{\gamma P/\rho}.$$

$$v_s = \sqrt{\frac{\gamma kT}{\mu m_H}} \propto \sqrt{T}$$

The sound speed depends on the local temperature!

What happens: density drops dramatically outside of convection zone \rightarrow since v_s (T!) and the flux energy F_E stay approximately the same across the boundary, the wave amplitude creates a *shock front* which heats the chromosphere and beyond!

In the immortal words of Bill O'Reilly, where do the magnetic fields come from? How did they get there?

MHD == plasmas and their interactions with H-fields

- Magnetic fields are generated from <u>moving electric</u> <u>charges</u>, and the energy of their creation is "stored" in them-- as a pseudo potential energy
- Magnetic energy density is numerically equivalent to magnetic pressure – work is done to compress plasma, which increases density of magnetic field lines "locked" in the plasma

$$u_m = \frac{B^2}{2\mu_0}. \qquad \qquad P_m = \frac{B^2}{2\mu_0}.$$

Information can travel along magnetic field lines as transerve **Alfven waves** (think: plucking a guitar string)

Adiabatic (dQ = 0) sound speed

$$v_s = \sqrt{\frac{\gamma P_g}{\rho}}$$

Alfven Speed

Estimates the propagation speed of a wave or disturbance down a magnetic field line Analogy: plucking a guitar string

$$v_m \sim \sqrt{\frac{P_m}{\rho}} = \frac{B}{\sqrt{2\mu_0\rho}}.$$

With less hand-waving,

$$v_m = \frac{B}{\sqrt{\mu_0 \rho}}$$

Useful to compare the Alfven speed along magnetic field lines to the plasma sound speed

"Information" travels along these lines – energy transport. What are the consequences of a varying magnetic field according to Maxwell's equations?

Parker Spiral \rightarrow spiraling magnetic fields.

- Angular momentum is transferred *away* from the Sun
- The extended magnetic fields are caused by the ejection of *solar wind* and the Sun's rotation

How do other stars compare to our Sun? → The field of research is even more dynamic than the stars themselves

Number of sunspots between 1700 and 2005 showing the 11-yr periodicity, with large amplitude variations occurring over hundreds of years

Butterfly Diagram – Sunspot latitude over time

A typical sunspot group

- Umbra can be 3x Earth sized
- Filamentary penumbra

How do we know sunspots are indicative of magnetic fields? How do we measure their direction and strength?

Spectral line SPLITTING – ZEEMAN EFFECT

Left: sunspot with corresponding spectroscopic slit Right: spectra

Do the characteristics of sunspots vary across the solar surface?

Polarization of light: direction of B-field

• Sunspot polarity coincides with overall solar polarity, and they cycle together through a full 22 years

- A leading sunspot in the geographical northern hemisphere will share that hemisphere's polarity
- Sunspot pairs are similar to
- Magnetic fields inhibit convective motions to the surface, reducing the shock front that would heat the photosphere
 - Decreases solar luminosity by as much as 0.1%
 - 0.1% of the solar luminosity is still 10^23 W and is measurable in temperature fluctuations of the Earth
 - Despite this, they prevent convective gas bubbles from sinking in sunspots

http://www.nasa.gov/mission_pages/sdo/news/sdo-year3.html

11- and 22- year cycles are thought to be *local* maxima and minima. Periodicity of sunspot activity found over centuries!

- Evidence on Earth via atmospheric radioactive carbon
- The magnetic field of sunspots reduces the outward energy flux from the Sun, reducing the # of cosmic rays

Red team: what other causes for this trend might there be?

Phenomenon Associated with Sunspots

PLAGES (pläzh) – bright H-alpha emission regions preceding a sunspot occurrence

SOLAR FLARES are eruptive events

- H-alpha seen as emission
- Large bursts of cosmic rays
- Occur in sunspot groups

Soft X-ray image of a solar flare. (Yohkoh Soft X-ray Telescope)

What causes a solar flare?

Magnetic Reconnection

- <u>http://upload.wikimedia.org/wikipedia/commons/2/24/</u> <u>Reconnection.gif</u>
- Magnetic field lines from different sources "reconnect" in a different configuration
- Maxwell's equations: electric resistivity in plasma opposes change to the magnetic field
- This can release thermal and, mechanical energy, and can accelerate particles
 - In the case of a solar flare, it is energy released via energetic *photons*

Spallation Reactions – (think "expellation"): the breaking of heavier nuclei into lighter via accelerated particles that are being *expelled* from solar flares

- Produce hard x- and gamma rays
- 1. De-excitation of Carbon

$$^{1}_{1}H + ^{16}_{8}O \rightarrow ^{12}_{6}C^{*} + ^{4}_{2}He + ^{1}_{1}H.$$

$$^{12}_{6}C^* \rightarrow {}^{12}_{6}C + \gamma$$

Photon energy 4.438 MeV 2. De-excitation of oxygen

$${}^{1}_{1}H + {}^{20}_{10}Ne \rightarrow {}^{16}_{8}O^{*} + {}^{4}_{2}He + {}^{1}_{1}H_{1}$$

Photon energy 6.129 MeV 3. Electron-positron annihilation

 $e^- + e^+ \rightarrow \gamma + \gamma$

4. Deuterium Production

$$^{1}_{1}H + n \rightarrow ^{2}_{1}H^{*} \rightarrow ^{2}_{1}H + \gamma$$

Photon energy 2.223 MeV

Solar Promeninces – quiescent or eruptive

Material hangs out along magnetic field lines within the corona in a quiescent prominence

- Gas condenses and cools, causing it to fall back towards the chromosphere
- This cooler gas is a source of emission, particularly Halpha
- Longer-lived than their eruptive counterparts

H-alpha image of a quiescent hedgerow prominence (Courtesy of Big Bear Solar Observatory)

Eruptive prominences

- Related to questionable magnetic field stability
- Prominence dramatically lifts away from the Sun, a la solar flares → except gas is ejected, not EM

Coronal Mass Ejections

- Ejecta of up to 10^13 kg at 10^2-10^3 km/s
- Harder to observe than their flare and prominent neighbors, and are likely associated with eruptive prominences
- 1-3.5 events/day
- "Magnetic Bubble" post magnetic reconnection

Coconal mass ejection captured by ESA/NASA's Solar and Heliospheric Observatory (SOHO) on March 15, 2013

Fig. 11.38 Magnetic dynamo model of the solar cycle.

- As a result of frozen in magnetic fields, the sun's differential rotation warps the field lines to the nice poloidal – aka dipole – configuration to toroidal, where the lines wrap around the Sun
- The lines are twisted and strengthened within the convective zone... think F = v x B – what happens?
- Magnetic pressure buoyancy forces the "ropes" to the surface → sunspot groups
- Opposing polarity in opposing hemispheres the ropes are effectiviely nullified towards the equator despite intuition that they are numerous there. This reverses the solar polarity!

FIGURE 11.39 The light curve of BD + 26°730, a BY Dra star. SAO 76659 is a nearby reference star. (Figure from Hartmann et al., *Ap. J.*, 249, 662, 1981.)

Flare stars: late type stars with brightness fluctuations (10²³ W matters more to these guys)

Starspots: certain stellar types exhibit long-term variations in stellar surface activity

- RS Canum Venaticorum
- BY Draconis