
The Chemical Composition of the Local Interstellar Dust

> Fernanda Nieva & Norbert Przybilla

Dr. Remeis Observatory Bamberg

Dear LOC, SOC, colleagues and friends,

my apologies for my absence.

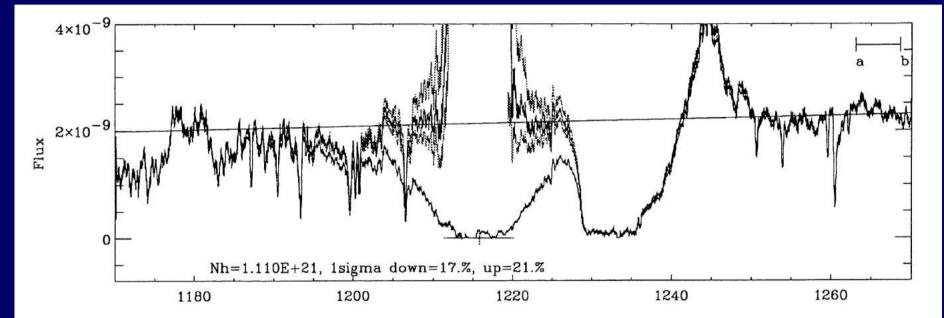
I wish you a very productive IAU GA and SpS12.

@ Norbert: thank you for presenting this!

Fernanda Nieva

Chemical composition of ISM dust

- presence of dust in cold/warm (<10⁴ K) ISM: reddening & extinction
- chemical composition difficult to be determind directly: lack of spectroscopic indicators
 - indirect methods


$$(X/H)_{dust} = (X/H)_{ref} - (X/H)_{gas} \qquad [ppm]$$

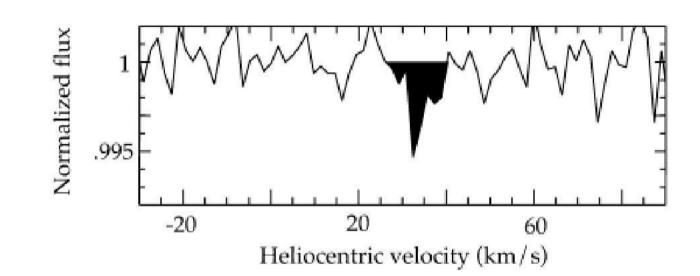
astrophysical notation for elemental abundances:

$$\varepsilon(X) = \log \frac{N(X)}{N(H)} + 12$$

Chemical composition of ISM gas #1

determination of hydrogen column density: via IS Lyα damping wings
 ▶ e.g. continuum reconstruction technique (Bohlin 1975)

Diplas & Savage (1994)


multiplication of flux by $e^{\tau(\lambda)} = e^{\sigma(\lambda) N(HI)}$ to correct for damping

$$\sigma(\lambda) = \frac{4.26 \cdot 10^{-20} \text{ cm}^2}{6.04 \cdot 10^{-10} + (\lambda - \lambda_0)^2} \qquad \lambda_0 = 1215.67\text{\AA}$$

hydrogen column density: $N(H) = N(HI) + N(H_2)$

Chemical composition of ISM gas #2

- metal abundances from unsaturated lines from ground states e.g. semi-forbidden CII] λ 2325Å

HST GHRS: S/N~850 $W_{\lambda} \sim 0.2 \text{ mÅ}$

Sofia (2004)

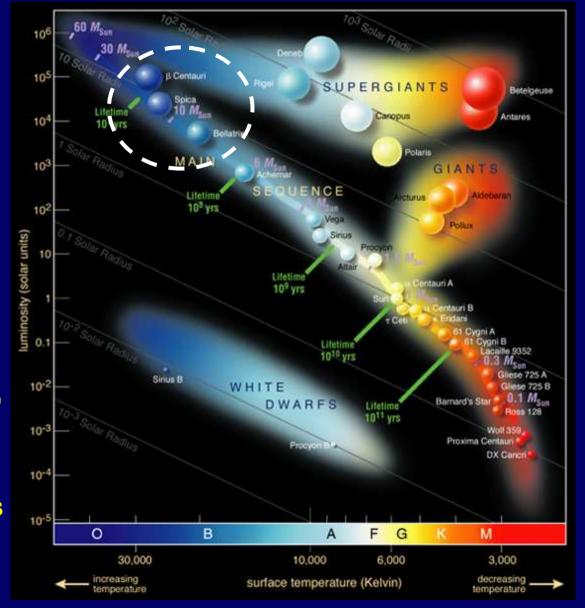
- metal column density via $W_{\lambda} \sim N(X) \cdot f_{ij} \cdot \sigma(\lambda)$

- chemical homogeneity of gas-phase in solar neighbourhood from many sightlines: C, O, Mg, Si, S, Fe, Zr, Kr, ...

Quest for a Suitable Abundance Reference

abundance reference: Sun, local F & G stars, B stars

Sun: + star that can be studied best + independent abundances from different indicators - 4.56 Gyr old, representative for present-day ISM? F&G stars: + differential abundances relative to Sun + increased number statistics - difficult age determination - non-LTE & 3D-corrections (convection) not considered early B stars: + short-lived: formed out of presen-day ISM + simple atmospheric physics - non-LTE dominated Sofia & Meyer (2001): recommendation of Sun and F&G stars

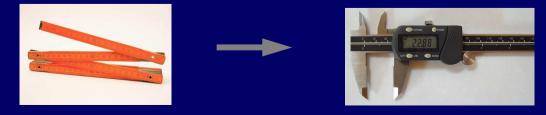

since then: revision of solar abundances, new work on early B stars

Early **B-type stars**

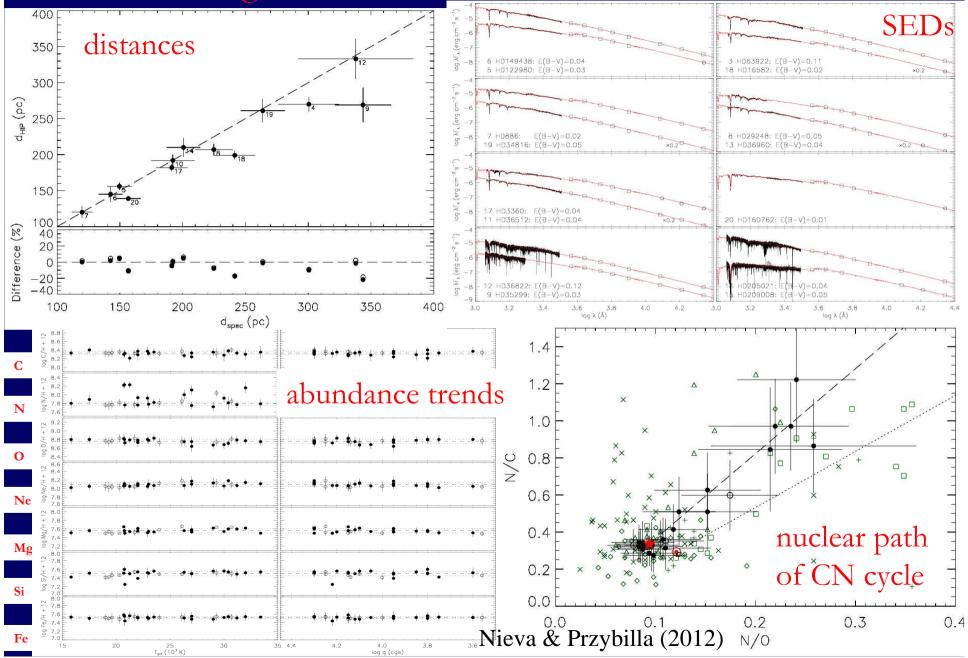
objects considered: - spectral type: B0 – B2 - LC V – III (ZAMS to TAMS)

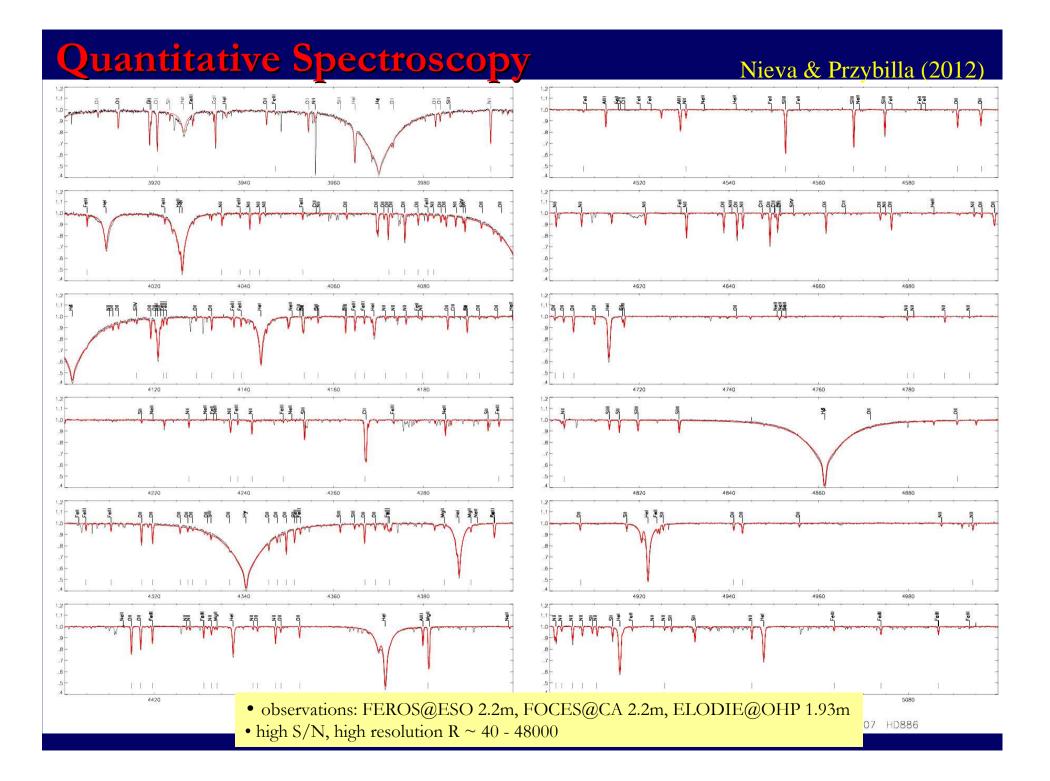
masses: 8 ... 18 M_☉
lifetime of up to few tens of Myr
T_{eff}: 18000 ... 32000 K
luminosity: 10⁴ ... 10⁵ L_☉

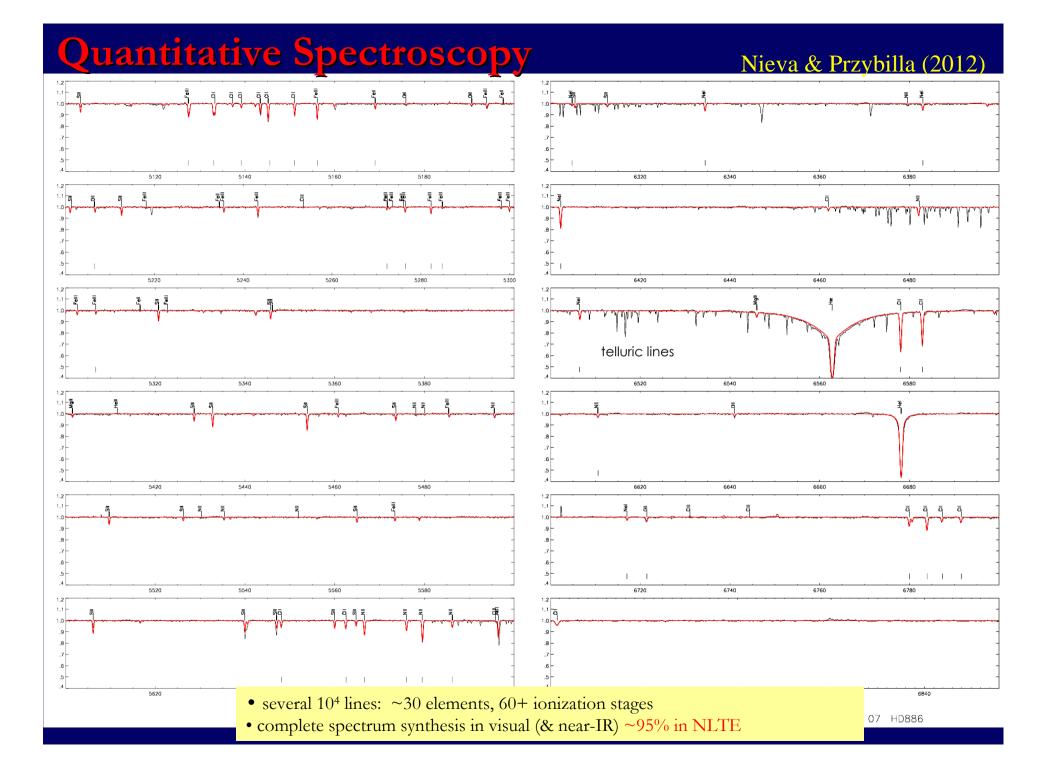
constraints on
 elemental abundances
 a present day



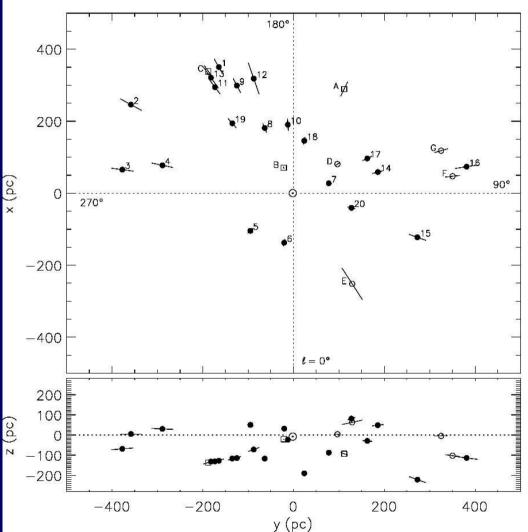
Non-LTE Diagnostics: Stellar Parameters & Abundances using hybrid non-LTE approach, robust analysis minimis


methodology & comprehensive model atoms

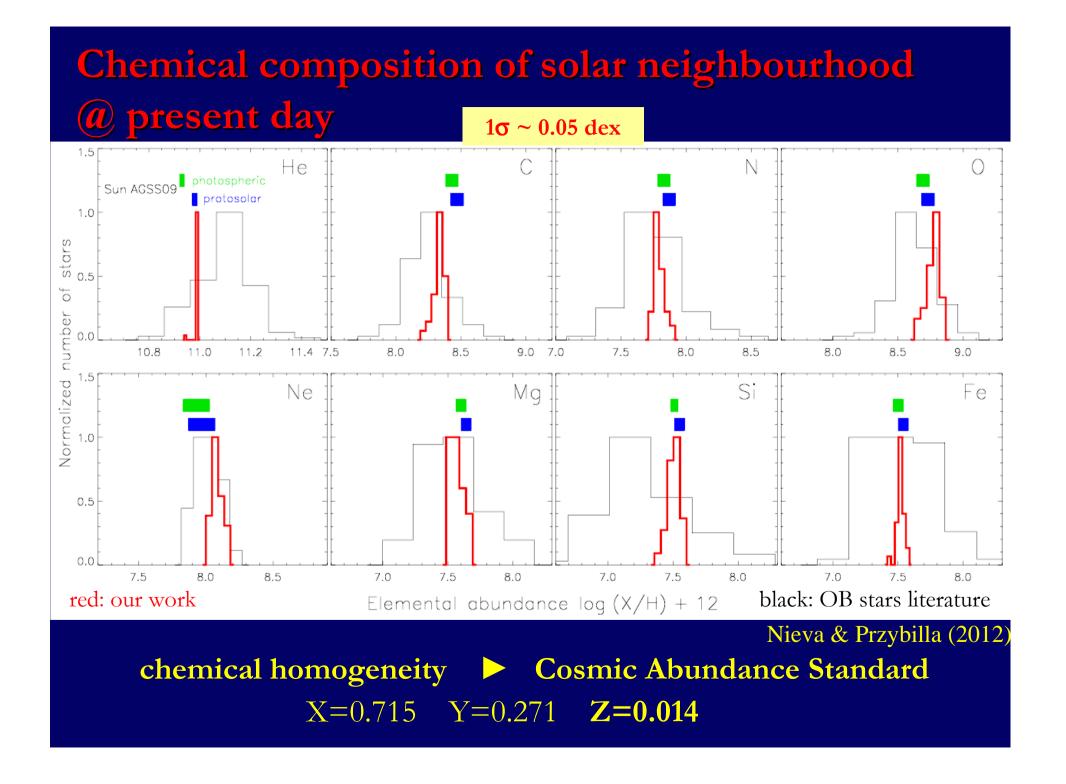

minimising systematics !


- ionization equilibria ► T_{eff}/log g elements: e.g. He I/II, C II/III/IV, O I/II, Ne I/II, Si II/III/IV, S II/III, Fe II/III ΔT_{eff} / T_{eff} ~ 1...2% usually: 5...10%
 Stark broadened hydrogen lines ► log g/T_{eff} Δ log g ~ 0.05...0.10 (cgs) usually: 0.2
- microturbulence, helium abundance, metallicity
 - + other constraints, where available: SED's, near-IR, ...
- abundances: Δloge ~ 0.05...0.10 dex (1s-stat.) usually: factor ~2
 Δloge ~ 0.07...0.12 dex (1s-sys.) USUCILY: ???

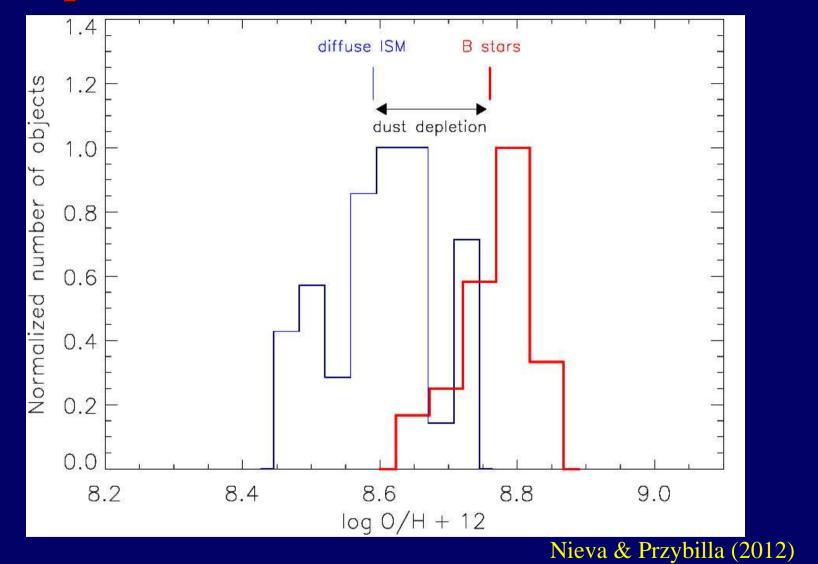
Non-LTE Diagnostics: Tests & Additional Constraints



Spatial Distribution of Sample Stars


solar neighbourhood $d \le 400 \text{ pc}$

associations:


- Sco-Cen
- Ori OB1
- Per OB2
- Lac OB1
- Cas-Tau
- + field stars
- + Ori OB1 Ia-Id sample of Nieva & Simon-Diaz (2011)

Nieva & Przybilla (2012)

Dust Depletion

- similar abundance distributions in gas & stars

CAS & Consequences for Dust Composition

Table 9. Chemical composition of different object classes in the solar neighbourhood.

Nieva & Przybilla (2012)

Elem.	Cosmic Standard B stars – this work ^{a}		Orion nebula		Young	ISM		Sun ^k		
			Gas	Dust ^d	F&G stars ^e	Gas	Dust ^j	GS98	AGSS09	CLSFB10
He	10.99 ± 0.01		10.988 ± 0.003^{b}						10.93 ± 0.01	
C	8.33 ± 0.04	214 ± 20	8.37 ± 0.03^{c}	~0	8.55 ± 0.10	7.96 ± 0.03^{f}	123 ± 23	8.52 ± 0.06	8.43 ± 0.05	8.50 ± 0.06
Ν	7.79 ± 0.04	62 ± 6	7.73 ± 0.09^{b}			7.79 ± 0.03^{g}	0 ± 7	7.92 ± 0.06	7.83 ± 0.05	7.86 ± 0.12
0	8.76 ± 0.05	575 ± 66	8.65 ± 0.03^{c}	128 ± 73	8.65 ± 0.15	8.59 ± 0.01^h	186 ± 67	8.83 ± 0.06	8.69 ± 0.05	8.76 ± 0.07
Ne	8.09 ± 0.05	123 ± 14	8.05 ± 0.03^{c}					8.08 ± 0.06	7.93 ± 0.10	
Mg	7.56 ± 0.05	36.3 ± 4.2	6.50: ^c	33.1 ± 4.2:	7.63 ± 0.17	6.17 ± 0.02^i	34.8 ± 4.2	7.58 ± 0.05	7.60 ± 0.04	2.2.2
Si	7.50 ± 0.05	31.6 ± 3.6	6.50 ± 0.25^{c}	28.4 ± 4.3	7.60 ± 0.14	6.35 ± 0.05^i	29.4 ± 3.6	7.55 ± 0.05	7.51 ± 0.03	
Fe	7.52 ± 0.03	33.1 ± 2.3	6.0 ± 0.3^{c}	32.1 ± 2.5	7.45 ± 0.12	5.41 ± 0.04^i	32.9 ± 2.3	7.50 ± 0.05	7.50 ± 0.04	

Notes. ^(a) Including nine stars from Orion (NS11), in units of $\log(El/H) + 12/atoms per 10^{6}$ H nuclei – computed from average star abundances (mean values over all individual lines *per element*, equal weight per line), the uncertainty is the standard deviation; ^(b) Esteban et al. (2004); ^(c) Simón-Díaz & Stasińska (2011); ^(d) difference between the cosmic standard and Orion nebula gas-phase abundances, in units of atoms per 10⁶ H nuclei; ^(e) Sofia & Meyer (2001); ^(f) value determined from strong-line transitions (Sofia et al. 2011), which is compatible with data from the analysis of the [C II] 158 μ m emission (Dwek et al. 1997). Weak-line studies of C II] $\lambda 2325$ Å indicate a higher gas-phase abundance $\varepsilon(C) = 8.11 \pm 0.07$ (Sofia 2004), which corresponds to 84 ± 28 ppm of carbon locked up in dust; ^(g) Meyer et al. (1997), corrected accordingly to Jensen et al. (2007); ^(h) Cartledge et al. (2004); ⁽ⁱ⁾ Cartledge et al. (2006). The uncertainty in the ISM gas-phase abundances is the standard error of the mean; ^(j) difference between the cosmic standard and ISM gas-phase abundances, in units of atoms per 10⁶ H nuclei; ^(k) photospheric values of Grevesse & Sauval (1998, GS98), Asplund et al. (2009, AGSS09) and Caffau et al. (2010, CLSFG10).

- Dust in diffuse ISM: relatively carbon poor & silicate-rich
- checksum Mg+Si+Fe vs. O match (some extra O may be in unidentified constituent)
- comparison with Orion dust: graphite minor species > C in PAHs
- homogeneity over hundreds of parsecs: highly efficient mixing