Cold Cores of Molecular Clouds

Mika Juvela, Department of physics, University of Helsinki
On behalf of the Planck and Herschel projects on cold cores
Content

- Molecular clouds and star formation

- Cold Cores
 - Observations and interpretation
 - Project Galactic Cold Cores → Planck & Herschel

- Some notes on modelling – moderating the interpretation of observations
The Milky Way - in dust emission

Galactic disc
~30 kpc

Star forming cloud
~10^{1-2} pc ~10^{0-5} M_\odot

Clumps, cores
~0.1-1 pc ~0.1-10 M_\odot

Planck – ESA and the HFI Consortium
Galactic Cold Cores & dust

- Far-infrared and sub-millimetre dust emission probes dense molecular clouds, especially the **cold** phase
- A tracer of the **pre-stellar phase**
 - The initial conditions for the birth of **stars** and **planetary** systems
 - The **density** and the **temperature**
 - ... only estimates of the **column density** and **colour temperature**
- How does dust itself evolve?
 - κ and β change because of grain growth, ice mantles... probably also as function of ν and T
The objects

- **Cold** cloud cores, where the stars are born
 - T down to 6K? (Evans et al. 2001, Galli et al. 2002; Pagani et al. 2003; Crapsi et al. 2007; Harju et al. 2008)
- We want to **understand** the physics
 - Density → the origin of the density field
 - Temperature → factors affecting thermal balance
 - Velocity field → core formation and evolution

The tools

- Observations of **spectral lines**
- Observations of **dust**
 - thermal dust emission
 - light scattered by dust
 - light extinction
• **Space-borne far-infrared** surveys: Estimates of T_{dust}, not very sensitive to cold dust (IRAS, ISO, AKARI, Spitzer)

• **Ground based (sub-)mm** observations: Often no T_{dust} data, better resolution (Scuba, LABOCA, Bolocam, MAMBO)

• **Balloon-borne (sub-mm)** observations: Large area, multi-wavelength surveys (PRONAOS, Archeops, BLAST, etc.)

• **Space-borne sub-millimetre and radio** observations: Several frequencies, large areas, high sensitivity → *Planck*, Herschel
Cold Cores & Planck

The Planck satellite mapped the sky at nine sub-millimetre and radio wavelengths

- 350µm, 550µm, 850µm, ..., 1cm
- better than 5' resolution in the sub-mm

This enables the detection of cold clumps!

Planck is also the first mission capable of a full survey

- full sky coverage
- sub-millimetre bands
- sufficient resolution
- excellent sensitivity
Preliminary catalog contained over 10000 sources, some 900 of which were included in the Early Cold Clumps catalogue (Planck collaboration 2011)

- distances from 100pc to 8kpc, Galactic heights up to ± 400pc
Cold Cores & Herschel

Key Programme **Galactic Cold Cores**

- to map ~120 fields containing cold Planck clumps
- a **cross-section** of the full population (T, M, n, R, l, b etc.)

- complementary to other programmes → includes high latitudes, outer regions of molecular cloud complexes, large distances

 - cf. **Gould Belt Survey** (Andre), **HIGAL** (Molinari), **EPOS** (Krause), and many other key programmes and normal programmes
Distribution of the ~120 Herschel target fields that include over 350 Planck-detected cold clumps
Morphology

- Isolated, cometary, filamentary, etc.
- Occasionally indications of dynamic interaction
- Further quantitative analysis
 - Clump mass spectra, P(D) analysis, filament extraction
Star formation

- WISE data show that a many cold sub-millimetre clumps are already associated with star formation.
CMF – Clump/core mass function (work in progress)

- can CMF be described with a unique power-law; what is the connection with the IMF
 - Motte et al. (1998)... Könyves et al. (2010) – talk by Ph. Andre
- in case of GCC, no more than ~100 c's per field → distance scatter make a joint study more challenging
- another goal: correlation of clumps and YSOs
 - J. Montillaud (in preparation)
- eventually: the internal structure of individual cores
 - \(n, T \) – requires radiative transfer modelling of the data
 - e.g., Sadavoy et al. 2012; Nielbock et al. (?) B68 etc.
P(A_v) analysis

- tail above the log-normal distribution is related to star formation? (Kainulainen et al. 2009, 2011)
- the analysis can be done now using Herschel column densities
Dust physics

Coreshine?

- In dense cloud cores **scattered light** has been detected as surprisingly long wavelengths
 - \(~3.5\mu m\) signal caused by the growth of dust particles? (Steinacker et al. 2010, Pagani et al. 2010)
- In WISE data of 56 fields, four detections, six tentative det.
 - there is a follow-up Spitzer programme on 90 Planck clumps, PI **R. Paladini**
\(\beta(T) \) relation?

- The spectral index \(\beta \) **appears** to decrease with temperature, as suggested by laboratory data.... but
 - also **the noise** can produce an apparent anticorrelation
 - **temperature variations** decrease the apparent \(\beta \)

\[\rightarrow \] need Monte Carlo and/or (hierarchical) statistical modelling to find the (~) un-biased truth

- Planck Early Results XXIII; Kelly et al. 2012; Veneziani et al. 2012 (submitted); Juvela et al. (in prep.)
Molecular lines

- Velocity-resolved line data **essential**
 - kinematic distances, separation of kinematic components, estimates of turbulent support
- internal kinematics
 - rotation, infall, outflows
- main gas parameters
 - density, temperature
- chemistry
 - age, deuteration, depletion
- Observations ongoing
 - APEX, Onsala 20m, IRAM 30m, Effelsberg, CSO; see also Wu et al. (2012), Liu et al. (2012)
Modelling

- to **understand** the limitations of the observations
 - to show uncertainties and biases, still usually under idealised conditions
- to **extract** the most information from the data
 - e.g., to estimate the temperature and density structure of a core when only projected surface brightness data are available; to separate dust properties from radiation field effects etc.
\(\beta (T) \) relation

- We know the observed spectral index is affected by
 - observational noise → artificial \((\beta, T)\) anticorrelation
 - Shetty et al. (2009b); Juvela & Ysard (2012b); Kelly et al. (2012); Veneziani et al. (2012)
 - mixing of temperatures → lower apparent \(\beta\) values
 - Shetty et al. (2009a); Juvela & Ysard (2012a)

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{beta_vs_temperature.png}
\caption{(2012b) Noise can be strongly non-gaussian}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{correlation.png}
\caption{(2012a) Positive or negative correlation - depending on the set of sources}
\end{figure}
The difference between cores that are heated externally by ISRF or by embedded protostars?

High resolution AMR MHD + radiative transfer modelling (see Lunttila et al. 2012)

Positive correlation!
Filaments

- Can we measure the filament profiles?
 - Up to a point. With Herschel the limit is at a few 100 pc
- Are some 'filaments' formed by a chance alignment
 - Possibly. This should apply more to clumps/cores (CMS!)

\[
\rho_p(r) = \frac{\rho_c}{\left[1 + \frac{(r/R_{\text{flat}})^2}{|p/2|}\right]}
\]
For nearby filaments, even 2MASS stellar colour excesses are enough to constrain filament properties

- ... the average profile

Malinen et al. (2012)
Summary

- **Sub-millimetre** observations **locate** pre-stellar clumps
 - The **Planck** survey is resulting in a catalogue of more than 10,000 cold clumps in the Milky Way
- High resolution data from the **Herschel** satellite reveal the **structure** of the clumps and their environment
 - Often fragmented, many already containing young stars
- Data must be complemented with **other wavelengths**
 - mid-infrared to trace young stellar objects, molecular lines to measure gas temperature and to map cloud kinematics
- Numerical **modelling** help us to understand what we see
 - … or reveals things we cannot see or do not yet understand
- The first summary of the Herschel project **Galactic Cold Cores** is to be expected within a year
References

- Andre et al. (2010), A&A 518, L102
- Andre et al. (2011), IAUS S270, Vol. 6, 255
- Arzoumanian et al. (2011), A&A 529, L6
- Belloche et al. (2011), A&A 535, A2; A&A 527, A145
- Boudet et al. (2005), A&A 633, 272
- Crapsi et al. (2007), A&A 470, 221
- Giannini et al. (2012), A&A 539, A156
- Harju et al. (2008), A&A 482, 535
- Henneman et al. (2012), A&A 543, L2
- Hill et al. (2011), A&A 533, A94
- Kainulainen et al. (2009), A&A, 508, L35
- Kainulainen et al. (2011), A&A 530, A64
- Kelly et al. (2012), ApJ 752, 55
- Könyves et al. (2010), A&A 518, L106
- Köhler et al. (2012), submitted
- Liu et al. (2012), arXiv-1207.0881
- Lunttila et al. (2012), A&A 544, A52
- Juvela et al. (2010), A&A 518: GCC-I
- Juvela et al. (2011), A&A 527, A111: GCC-II
- Juvela & Ysard (2012a), A&A 539, A71: the effect of T mixing on $\beta(T)$
- Juvela & Ysard (2012b), A&A 541, A33: $\beta(T)$ and noise
- Juvela et al. (2012c), A&A 538, A133: measuring T_{gas} with NH_3 lines
- Juvela et al. (2012d), A&A 541, A12: GCC-III
- Juvela et al. (2012e), A&A 544, A14: modelling of dust emission and scattering
- Juvela et al. (2012f), A&A 544, A141: measuring filament profiles with dust emission
- Malinen et al. (2011), A&A 530, A101: radiative transfer models of cores
- Malinen et al. (2012), A&A 544, A50: profiling filaments with extinction
- Maury et al. (2011), A&A 535, A77
- Motte et al. (1998), A&A 336, 150
- Nguyen Luong et al. (2011), A&A 535, A76
- Nutter et al. (2009), MNRAS 396, 1851
- Pagani et al. (2010), Science 329, 1622
- Paradis et al. (2012), A&A 537, A113
- Peretto et al. (2012), A&A 541, A63
- Ragan et al. (2012), arXiv-1207-6518
- Sadavoy et al. (2012), A&A 540, A10
- Schnee et al. (2012), ApJ 745, 18
- Schneider et al. (2012), A&A 540, L11
- Sipilä (2012), A&A 543, A38
- Veneziani et al. (2012), submitted
- Wilcock et al. (2011), A&A 526, A159
- Wu et al. (2012), arXiv-1206.7027
- Ysard et al. (2012), A&A 542, A21