

Physics and chemistry of UV illuminated gas: The Horsehead case

V. Guzmán¹ J. Pety¹ P. Gratier¹ M. Gerin² J.R. Goicoechea³ E. Roueff⁴

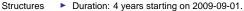
¹IRAM, Grenoble

²LERMA-ENS, Paris

³CSIC-INTA, Madrid

⁴LUTH, UMR 8102, Observatoire de Paris

August 28


SCHISM

1 FRMA

- Partners: IRAM (J.Pety), LERMA-LRA (M.Gerin), LUTH-ISM (F.LePetit).
- Budget: 488 438 euros.

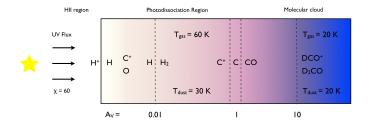
Goals

- Coupling solid and gas chemistry.
 - Coupling chemistry and dynamics (MHD shocks and turbulence).
 - Get benchmark observational datasets.

Relevancy

- State-of-the-art numerical developments.
 - Use of the best (sub)-millimeter instruments (Herschel, ALMA, PdBI, 30m...).

A team of observers and theoreticians

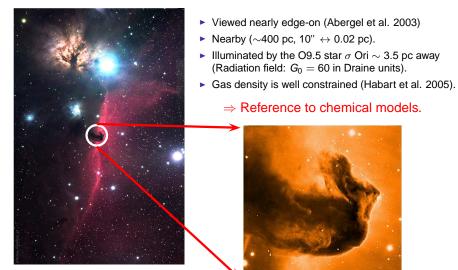

- IRAM: S.Bardeau, P.Gratier, V.Guzman, E.Reynier, N.Rodriguez-Fernandez.
- LERMA/LRA: S.Cabrit, M.DeLuca, E.Falgarone, B.Goddard, A.Gusdorf, P.Lesaffre.
- LUTH/ISM: J.LeBourlot, S.Miyake, E.Roueff.
- Additionals: P.Boissé, J.R.Goicoechea, H.Liszt, R.Lucas, G.Pineau des Forêts.

Results at 18 months from start

- 23 papers.
- 20 presentations in international conferences.

http://schism.ens.fr

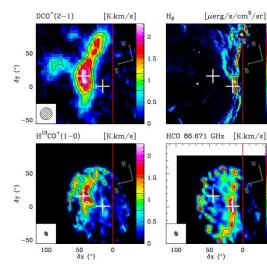
PDR: Photo Dissociation Regions



FUV photons (< 13.6 eV) determine the physical and chemical properties. Examples: diffuse clouds, starburst galaxies, surfaces of protoplanetary disks, ... **PDR models** \Rightarrow Understand evolution of FUV-illuminated matter.

Complex PDR models and chemical networks need well-defined observations to serve as basic references.

- ► Several species and many lines ⇒ Radiative transfer models ⇒ Column densities
- Spatial resolution ⇒ resolve gradients predicted by models ⇒ Interferometers (ALMA, NOEMA)


PDR template: the Horsehead nebula

Credit: Ryan Steinberg & Family, Adam Block, NOAO, AURA, NSF

Credit: ESO

Two different environments less than 40" away

A far-UV illuminated PDR 20 HCO (Gerin et al. 2009)

• $A_V \sim 1.5$

30

10

1

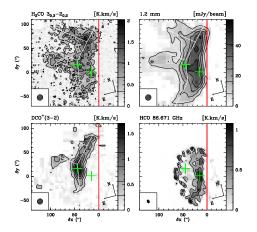
0.5

- Warm $T_{\rm kin} \sim 60 \, {\rm K}$
- Relatively dense $n_{\rm H} \sim 6 \times 10^4 {\rm cm}^{-3}$
- A shielded, dense core DCO⁺ (Pety et al. 2005)
 - ► A_V ~ 20
 - ► Cold T_{kin} ~ 20 K
 - Dense $n_{\rm H} \sim 2 \times 10^5 {\rm cm}^{-3}$
 - High fractionation $[DCO^+]/[HCO^+] = 2\%$

0

[K.km/s]

(Complex) organic molecules: H₂CO and CH₃OH



Importance: Synthesis of more complex organic molecules in the ISM \rightarrow protoplanetary diks?

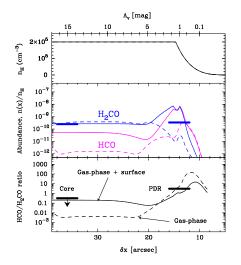
- Both are observed in a wide range of interstellar environments (proto-stellar cores, YSOs, dark clouds, diffuse clouds, etc...)
- With high abundances $(10^{-6} 10^{-7} \text{ in hot cores})$.
- ► H₂CO can form efficiently in both the gas-phase and on ices.
- CH₃OH is thought to be formed only in ices.
- $\blacktriangleright \ \ \text{CO} \xrightarrow{H} \text{HCO} \xrightarrow{H} \text{H}_2\text{CO} \xrightarrow{H} \text{CH}_3\text{O} \xrightarrow{H} \text{CH}_3\text{OH}$
- Evidence:
 - Methanol ices have been observed towards high- and low-mass protostars (abundances up to ~ 30% relative to water, Pontoppidan et al. 2003)
 - Laboratory experiments have shown this process is efficient (Watanabe et al. 2004, Fuchs et al. 2009)
- ▶ Thermal desorption: evaporation temperature \simeq 40 K (H₂CO) and \simeq 80 K (CH₃OH)
- Photo-desorption (Öberg et al. 2009a,b; Muñoz Caro et al. 2010)

H₂CO: Photo-desorption of dust grain ice mantles (Guzmán et al. 2011)

IRAM-30m observations

- Abundance:
 - ▶ [H₂CO] = 2.8 × 10⁻¹⁰ PDR
 - ► [H₂CO] = 2.0 × 10⁻¹⁰ CORE Similar in PDR and dense core
- Ortho-to-para ratio
 - ► Core: ~ 3 (equilibrium)
 - PDR: ~ 2
- Dust temperature:
 - $T_{\rm dust} \simeq 30 \text{ K PDR}$
 - ► $T_{dust} \simeq 20 \text{ K CORE}$ → Clean environment to isolate the role of photodesorption.

H₂CO: Photo-desorption of dust grain ice mantles (Guzmán et al. 2011)


IRAM-30m observations (\sim 16 $^{\prime\prime}$ resolution)

- Abundance:
 - $[H_2CO] = 2.8 \times 10^{-10} PDR$
 - $[H_2CO] = 2.0 \times 10^{-10} \text{ CORE}$
- ortho-to-para ratio:
 - PDR: ~ 2
 - CORE: ~ 3 (equilibrium)

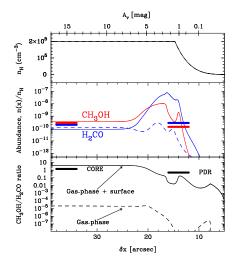
PDR models: Meudon

Le Bourlot et al. (1993), Le Petit et al. (2006)

- Pure gas-phase chemistry
 - Core: OK
 - PDR: Underestimates abundance
- ► Gas-phase + Grain surface chemistry CO \rightarrow HCO \rightarrow H₂CO \rightarrow CH₃O \rightarrow CH₃OH
 - PDR: OK

\Rightarrow Photo-desorption is needed to explain the observed H₂CO abundance in the PDR.

CH₃OH: (Guzmán et al. in prep)

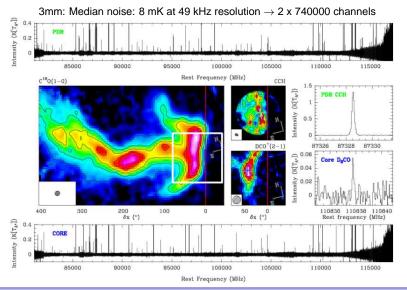

IRAM-30m observations (16 - 29" resolution)

- Abundance:
 - $[CH_3OH] = (1.1 1.6) \times 10^{-10} PDR$
 - $[CH_3OH] = (2.5 3.0) \times 10^{-10} \text{ CORE}$

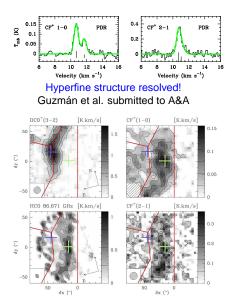
PDR models: Meudon

Le Bourlot et al., to be submitted

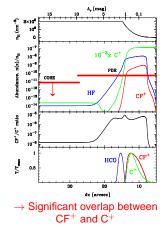
- Pure gas-phase chemistry
 - Abundances underestimated by ~ 5 orders of magnitude
- Gas-phase + Grain surface chemistry CO → HCO → H₂CO → CH₃O → CH₃OH
 - PDR and CORE: OK



Unresolved peak at $\delta x \sim 15'' \Rightarrow$ Interferometric observations!

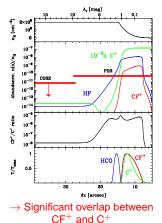

Horsehead WHISPER: 3, 2 and 1mm (J. Pety, P. Gratier, V. Guzmán, et al.)

Wideband High-resolution Iram-30m Surveys at two Positions with Emir Receivers



The Horsehead nebula

I. CF⁺: as a proxy of C⁺ (Guzmán et al. 2012)

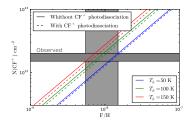


- Second detection in the ISM.
- Abundances:
 - ▶ PDR: 4.9 6.5 × 10⁻¹⁰

I. CF⁺: as a measure of the fluorine abundance (Guzmán et al. 2012)

- Second detection in the ISM.
- Abundances:
 - ▶ PDR: 4.9 6.5 × 10⁻¹⁰

- Simple chemistry:
 - Formation: HF + C⁺ $\xrightarrow{k_1}$ CF⁺ + H

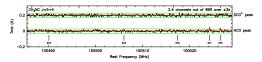

► Destruction:

$$CF^{+} + e^{-} \xrightarrow{k_{2}} C + F$$


$$CF^{+} + h\nu \rightarrow C^{+} + H$$

$$\Rightarrow N(CF^{+}) \simeq \frac{k_{1}}{k_{2}}[F] n_{H} I [cm^{-2}]$$

$$F/H \simeq (0.6 - 1.5) \times 10^{-8}$$



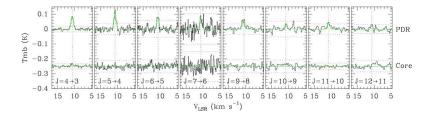
II. Relatively complex (iso-)nitriles: CH₃CN (Gratier et al. in prep)

CH₃CN hyperfine structure resolved

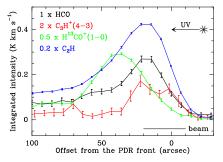
First firm detection of CH₃NC at mm wavelength

- Good thermometer for large densities $(\geq 10^6 \text{cm}^{-3}).$
- Abundances:
 - PDR

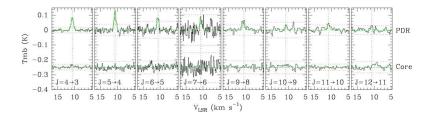
$$[CH_3CN] = (1.6 - 6.3) \times 10^{-10}$$


Core

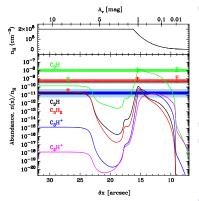
 $[CH_3CN] = (0.5 - 1.3) \times 10^{-11}$


CH₃CN is 40 times more abundant in the PDR than in the dense core!

- ► Pure gas-phase models fail: HCN $\xrightarrow{CH_3^+}$ CH₃HCN⁺ $\xrightarrow{e^-}$ CH₃CN
 - photo-desorption?
 - UV photo-processing on ices?
- Isomeric ratio in PDR [CH₃NC]/[CH₃CN] = 0.1


III. First detection of C_3H^+ in the ISM (Pety et al. submitted to A&A)

- Consistent set of 8 unidentified lines towards the PDR position.
- Linear rotor, with a ¹Σ electronic ground state.
- The deduced rotational constant is close to I-C₃H.
- Reactive molecule with a spatial distribution similar to small hydrocarbon chains.


III. First detection of C_3H^+ in the ISM (Pety et al. submitted to A&A)

- Consistent set of 8 unidentified lines towards the PDR position.
- Linear rotor, with a ¹Σ electronic ground state.
- The deduced rotational constant is close to I-C₃H.
- Reactive molecule with a spatial distribution similar to small hydrocarbon chains.
 - \Rightarrow Most probable candidate: C₃H⁺

- Right electronic state.
- Computed rotational constant (Cooper & Murphy 1988) close to deduced value.
- Dipole moment: 2.97 Debye (ab inito calculations by D. Talbi, private comunication)
- Experimental spectroscopic confirmation is on-going at the PhLAM lab in Lille (Bailleux & Margules, priv. comm.)

III. First detection of C_3H^+ in the ISM (Pety et al. submitted to A&A)

 Importance: Ion-molecule reactions with C₃H⁺ → most important channels to form hydrocarbons.

$$C_{2}H_{2} \xrightarrow{C^{+}} C_{3}H^{+} \xrightarrow{H_{2}} C_{3}H_{2}^{+} \xrightarrow{e^{-}} C_{3}H$$

$$H_{2} \xrightarrow{C_{3}H_{2}^{+}} C_{3}H_{3}^{+} \xrightarrow{e^{-}} C_{3}H_{2}$$

- Abundance: $[C_3H^+] = 2 \pm 0.7 \times 10^{-11} cm^{-2}$
- Spatial structure: 2 peaks
 - Narrow filament at the edge
 - Lower abundance Plateau at dense core

Need high resolution observations!

 C₂H and C₃H₂ High-resolution observations (Pety et al. 2005)

Summary

- Organic molecules:
 - Photo-desorption of dust grain ice mantles is needed to explain the observed H₂CO abundance in the PDR (Guzmán et al. 2011).
 - ► CH₃OH is efficiently photo-desorbed in both the PDR and dense core.
 - On-going PdBI interferometric observations to resolve the peak at the edge of the PDR.
- Horsehead WHISPER: 3, 2 and 1mm
 - CF⁺ can be used as a proxy of C⁺ and a measure of the fluorine abundance (Guzmán et al. 2012).
 - CH₃CN is 40 times more abundant in the PDR than in the shielded dense core (Gratier et al. in prep).
 - First detection of C_3H^+ in the ISM (Pety et al. submitted to A&A).
- Approximately 30 species (+ their isotopologues) detected in the PDR and the dense core
 This enables a detailed comparison of the chemistry of UV-illuminated and
 UV-shielded gas.

Thank you!